論文の概要: The Power of Personality: A Human Simulation Perspective to Investigate Large Language Model Agents
- arxiv url: http://arxiv.org/abs/2502.20859v1
- Date: Fri, 28 Feb 2025 09:01:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:42:34.225632
- Title: The Power of Personality: A Human Simulation Perspective to Investigate Large Language Model Agents
- Title(参考訳): 人格の力--大規模言語モデルエージェントの人間シミュレーションの視点から
- Authors: Yifan Duan, Yihong Tang, Xuefeng Bai, Kehai Chen, Juntao Li, Min Zhang,
- Abstract要約: クローズドタスクにおける性格特性は問題解決にどのように影響するか?
オープンなタスクにおいて、特性は創造性をどう形成しますか?
シングルエージェントのパフォーマンスはマルチエージェントコラボレーションにどのように影響しますか?
- 参考スコア(独自算出の注目度): 33.84280027120088
- License:
- Abstract: Large language models (LLMs) excel in both closed tasks (including problem-solving, and code generation) and open tasks (including creative writing), yet existing explanations for their capabilities lack connections to real-world human intelligence. To fill this gap, this paper systematically investigates LLM intelligence through the lens of ``human simulation'', addressing three core questions: (1) How do personality traits affect problem-solving in closed tasks? (2) How do traits shape creativity in open tasks? (3) How does single-agent performance influence multi-agent collaboration? By assigning Big Five personality traits to LLM agents and evaluating their performance in single- and multi-agent settings, we reveal that specific traits significantly influence reasoning accuracy (closed tasks) and creative output (open tasks). Furthermore, multi-agent systems exhibit collective intelligence distinct from individual capabilities, driven by distinguishing combinations of personalities. We demonstrate that LLMs inherently simulate human behavior through next-token prediction, mirroring human language, decision-making, and collaborative dynamics.
- Abstract(参考訳): 大規模言語モデル(LLM)は、クローズドなタスク(問題解決やコード生成を含む)とオープンなタスク(創造的な記述を含む)の両方に優れるが、それらの能力に関する既存の説明は現実世界の人間の知性とのつながりを欠いている。
このギャップを埋めるために,本論文は「人間シミュレーション」のレンズを用いたLCMインテリジェンスを体系的に調査し,(1)クローズドタスクにおけるパーソナリティ特性が課題解決にどのように影響するか,という3つの質問に対処する。
2) オープンタスクにおける特性の創造性はどのように形成されるか?
(3)シングルエージェントのパフォーマンスはマルチエージェントコラボレーションにどのように影響するか?
LLMエージェントにビッグファイブの性格特性を割り当て、その特性を複数エージェント設定で評価することにより、特定の特徴が推論精度(クローズドタスク)と創造的出力(オープンタスク)に大きく影響することを明らかにする。
さらに、マルチエージェントシステムは、個性の組み合わせを区別することによって、個々の能力とは異なる集団知性を示す。
我々は,LLMが人間の振る舞いを,次から次へと予測し,人間の言語を模倣し,意思決定し,協調的ダイナミクスによって本質的にシミュレートすることを実証した。
関連論文リスト
- Giving AI Personalities Leads to More Human-Like Reasoning [7.124736158080938]
我々は,人間集団の多様な推論行動を模倣するAIの可能性について検討する。
自然言語推論(NLI)フォーマットを新たに一般化した推論タスクを設計した。
我々は、人格特性を反映したAI応答を誘発するために、ビッグファイブのパーソナリティモデルにインスパイアされたパーソナリティベースのプロンプトを用いた。
論文 参考訳(メタデータ) (2025-02-19T23:51:23Z) - Beyond Profile: From Surface-Level Facts to Deep Persona Simulation in LLMs [50.0874045899661]
本稿では,キャラクタの言語パターンと特徴的思考過程の両方を再現するモデルであるキャラクタボットを紹介する。
ケーススタディとしてLu Xunを用いて、17冊のエッセイコレクションから得られた4つのトレーニングタスクを提案する。
これには、外部の言語構造と知識を習得することに焦点を当てた事前訓練タスクと、3つの微調整タスクが含まれる。
言語的正確性と意見理解の3つのタスクにおいて、キャラクタボットを評価し、適応されたメトリクスのベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2025-02-18T16:11:54Z) - Humanlike Cognitive Patterns as Emergent Phenomena in Large Language Models [2.9312156642007294]
我々は、意思決定バイアス、推論、創造性の3つの重要な認知領域にわたって、大規模言語モデルの能力を体系的にレビューする。
意思決定では、LSMはいくつかの人間のようなバイアスを示すが、人間の観察するバイアスは欠落している。
GPT-4のような先進的なLCMは、人間のシステム2思考に似た熟考的推論を示し、小さなモデルは人間レベルの性能に欠ける。
LLMはストーリーテリングのような言語ベースの創造的なタスクに優れているが、現実の文脈を必要とする散発的な思考タスクに苦労する。
論文 参考訳(メタデータ) (2024-12-20T02:26:56Z) - Spontaneous Emergence of Agent Individuality through Social Interactions in LLM-Based Communities [0.0]
本稿では,Large Language Model (LLM) ベースのエージェントを用いて,ゼロからエージェントが出現することを検討する。
このマルチエージェントシミュレーションを解析することにより、社会的規範、協力、性格特性が自然に出現する方法について、貴重な新しい知見を報告する。
論文 参考訳(メタデータ) (2024-11-05T16:49:33Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration [98.18244218156492]
大規模言語モデル(LLM)は、非常に高度な自然言語処理を持つ。
アプリケーションがマルチエージェント環境に拡大するにつれて、包括的な評価フレームワークの必要性が生じる。
この研究は、マルチエージェント設定内でLLMを評価するための新しい競合ベースのベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - Editing Personality for Large Language Models [73.59001811199823]
本稿では,Large Language Models (LLMs) の性格特性の編集に焦点をあてた革新的なタスクを紹介する。
このタスクに対処する新しいベンチマークデータセットであるPersonalityEditを構築します。
論文 参考訳(メタデータ) (2023-10-03T16:02:36Z) - Unleashing the Emergent Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration [116.09561564489799]
Solo Performance Promptingは、複数のペルソナと多ターンの自己コラボレーションをすることで、単一のLCMを認知的シナジストに変換する。
認知シナジスト(英: Cognitive Synergist)は、複雑なタスクにおける問題解決を強化するために、複数の心の強みと知識を協調的に結合するインテリジェントエージェントである。
より詳細な分析により,LLMに複数の微粒なペルソナを割り当てることによって,単一あるいは固定数のペルソナに比べて問題解決能力が向上することが示された。
論文 参考訳(メタデータ) (2023-07-11T14:45:19Z) - Brain in a Vat: On Missing Pieces Towards Artificial General
Intelligence in Large Language Models [83.63242931107638]
本稿では,知的エージェントの4つの特徴について述べる。
実世界の物体との活発な関わりは、概念的表現を形成するためのより堅牢な信号をもたらすと我々は主張する。
我々は、人工知能分野における将来的な研究の方向性を概説して結論付ける。
論文 参考訳(メタデータ) (2023-07-07T13:58:16Z) - Personality-aware Human-centric Multimodal Reasoning: A New Task,
Dataset and Baselines [32.82738983843281]
我々はPersonality-aware Human-centric Multimodal Reasoning (PHMR) (T1)と呼ばれる新しいタスクを導入する。
課題は、過去の事例から得たマルチモーダル情報を用いて、個性要素を統合しながら、特定の個人の将来行動を予測することである。
実験の結果,性格特性を取り入れることで,人間中心の多モーダル推論性能が向上することが示された。
論文 参考訳(メタデータ) (2023-04-05T09:09:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。