Variational Bayesian Pseudo-Coreset
- URL: http://arxiv.org/abs/2502.21143v1
- Date: Fri, 28 Feb 2025 15:26:10 GMT
- Title: Variational Bayesian Pseudo-Coreset
- Authors: Hyungi Lee, Seungyoo Lee, Juho Lee,
- Abstract summary: Pseudo-coresets, small learnable datasets that mimic the entire data, have been proposed.<n>We propose Variational Bayesian Pseudo-Coreset (VBPC), a novel approach that utilizes variational inference to efficiently approximate the posterior distribution.
- Score: 14.400596021890863
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of deep learning requires large datasets and extensive training, which can create significant computational challenges. To address these challenges, pseudo-coresets, small learnable datasets that mimic the entire data, have been proposed. Bayesian Neural Networks, which offer predictive uncertainty and probabilistic interpretation for deep neural networks, also face issues with large-scale datasets due to their high-dimensional parameter space. Prior works on Bayesian Pseudo-Coresets (BPC) attempt to reduce the computational load for computing weight posterior distribution by a small number of pseudo-coresets but suffer from memory inefficiency during BPC training and sub-optimal results. To overcome these limitations, we propose Variational Bayesian Pseudo-Coreset (VBPC), a novel approach that utilizes variational inference to efficiently approximate the posterior distribution, reducing memory usage and computational costs while improving performance across benchmark datasets.
Related papers
- Quantification of Uncertainties in Probabilistic Deep Neural Network by Implementing Boosting of Variational Inference [0.38366697175402226]
Boosted Bayesian Neural Networks (BBNN) is a novel approach that enhances neural network weight distribution approximations.
BBNN achieves 5% higher accuracy compared to conventional neural networks.
arXiv Detail & Related papers (2025-03-18T05:11:21Z) - Prior-Fitted Networks Scale to Larger Datasets When Treated as Weak Learners [82.72552644267724]
BoostPFN can outperform standard PFNs with the same size of training samples in large datasets.
High performance is maintained for up to 50x of the pre-training size of PFNs.
arXiv Detail & Related papers (2025-03-03T07:31:40Z) - Implicit Generative Prior for Bayesian Neural Networks [8.013264410621357]
We propose a novel neural adaptive empirical Bayes (NA-EB) framework for complex data structures.
The proposed NA-EB framework combines variational inference with a gradient ascent algorithm.
We demonstrate the practical applications of our framework through extensive evaluations on a variety of tasks.
arXiv Detail & Related papers (2024-04-27T21:00:38Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Prior-mean-assisted Bayesian optimization application on FRIB Front-End
tunning [61.78406085010957]
We exploit a neural network model trained over historical data as a prior mean of BO for FRIB Front-End tuning.
In this paper, we exploit a neural network model trained over historical data as a prior mean of BO for FRIB Front-End tuning.
arXiv Detail & Related papers (2022-11-11T18:34:15Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
Graph neural networks (GNNs) have demonstrated excellent performance in a wide range of applications.
Existing scalable GNNs leverage linear propagation to preprocess the features and accelerate the training and inference procedure.
We propose a novel adaptive propagation order approach that generates the personalized propagation order for each node based on its topological information.
arXiv Detail & Related papers (2022-11-01T14:38:18Z) - Efficient Bayes Inference in Neural Networks through Adaptive Importance
Sampling [19.518237361775533]
In BNNs, a complete posterior distribution of the unknown weight and bias parameters of the network is produced during the training stage.
This feature is useful in countless machine learning applications.
It is particularly appealing in areas where decision-making has a crucial impact, such as medical healthcare or autonomous driving.
arXiv Detail & Related papers (2022-10-03T14:59:23Z) - Partitioning sparse deep neural networks for scalable training and
inference [8.282177703075453]
State-of-the-art deep neural networks (DNNs) have significant computational and data management requirements.
Sparsification and pruning methods are shown to be effective in removing a large fraction of connections in DNNs.
The resulting sparse networks present unique challenges to further improve the computational efficiency of training and inference in deep learning.
arXiv Detail & Related papers (2021-04-23T20:05:52Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
We aim for efficient deep BNNs amenable to complex computer vision architectures.
We achieve this by leveraging variational autoencoders (VAEs) to learn the interaction and the latent distribution of the parameters at each network layer.
Our approach, Latent-Posterior BNN (LP-BNN), is compatible with the recent BatchEnsemble method, leading to highly efficient (in terms of computation and memory during both training and testing) ensembles.
arXiv Detail & Related papers (2020-12-04T19:50:09Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.