A physics-informed Bayesian optimization method for rapid development of electrical machines
- URL: http://arxiv.org/abs/2503.00420v1
- Date: Sat, 01 Mar 2025 09:43:58 GMT
- Title: A physics-informed Bayesian optimization method for rapid development of electrical machines
- Authors: Pedram Asef, Christopher Vagg,
- Abstract summary: This study introduces a novel physics-informed machine learning (PIML) design optimization process for improving slot filling factor (SFF)<n>A maximum entropy sampling algorithm (MESA) is used to seed a physics-informed Bayesian optimization (PIBO) algorithm.<n>The proposed PIBO-MESA is 45% faster than existing methods, such as the non-dominated sorting genetic algorithm II (NSGA-II)
- Score: 2.07180164747172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advanced slot and winding designs are imperative to create future high performance electrical machines (EM). As a result, the development of methods to design and improve slot filling factor (SFF) has attracted considerable research. Recent developments in manufacturing processes, such as additive manufacturing and alternative materials, has also highlighted a need for novel high-fidelity design techniques to develop high performance complex geometries and topologies. This study therefore introduces a novel physics-informed machine learning (PIML) design optimization process for improving SFF in traction electrical machines used in electric vehicles. A maximum entropy sampling algorithm (MESA) is used to seed a physics-informed Bayesian optimization (PIBO) algorithm, where the target function and its approximations are produced by Gaussian processes (GP)s. The proposed PIBO-MESA is coupled with a 2D finite element model (FEM) to perform a GP-based surrogate and provide the first demonstration of the optimal combination of complex design variables for an electrical machine. Significant computational gains were achieved using the new PIBO-MESA approach, which is 45% faster than existing stochastic methods, such as the non-dominated sorting genetic algorithm II (NSGA-II). The FEM results confirm that the new design optimization process and keystone shaped wires lead to a higher SFF (i.e. by 20%) and electromagnetic improvements (e.g. maximum torque by 12%) with similar resistivity. The newly developed PIBO-MESA design optimization process therefore presents significant benefits in the design of high-performance electric machines, with reduced development time and costs.
Related papers
- Accelerated Gradient-based Design Optimization Via Differentiable Physics-Informed Neural Operator: A Composites Autoclave Processing Case Study [0.0]
We introduce a novel Physics-Informed DeepONet (PIDON) architecture to effectively model the nonlinear behavior of complex engineering systems.
We demonstrate the effectiveness of this framework in the optimization of aerospace-grade composites curing processes achieving a 3x speedup.
The proposed model has the potential to be used as a scalable and efficient optimization tool for broader applications in advanced engineering and digital twin systems.
arXiv Detail & Related papers (2025-02-17T07:11:46Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
We propose a synergistic methodology to concurrently optimize perovskite memristor fabrication and develop robust analog DNNs.<n>We develop "BayesMulti", a training strategy utilizing BO-guided noise injection to improve the resistance of analog DNNs to memristor imperfections.<n>Our integrated approach enables use of analog computing in much deeper and wider networks, achieving up to 100-fold improvements.
arXiv Detail & Related papers (2024-12-03T19:20:08Z) - Automated Design and Optimization of Distributed Filtering Circuits via Reinforcement Learning [20.500468654567033]
This study proposes a novel end-to-end automated method for DFC design.
The proposed method harnesses reinforcement learning (RL) algorithms, eliminating the dependence on the design experience of engineers.
Our method achieves superior performance when designing complex or rapidly evolving DFCs.
arXiv Detail & Related papers (2024-02-22T02:36:14Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Artificial-Intelligence-Based Design for Circuit Parameters of Power
Converters [0.0]
An artificial-intelligence-based design (AI-D) approach is proposed in this article for the parameter design of power converters.
To mitigate human-dependence for the sake of high accuracy and easy implementation, simulation tools and batch-normalization neural network (BN-NN) are adopted.
The proposed AI-D approach is validated in the circuit parameter design of the synchronous buck converter in the 48 to 12 V accessory-load power supply system in electric vehicle.
arXiv Detail & Related papers (2023-07-30T08:39:41Z) - Toward High-Performance Energy and Power Battery Cells with Machine
Learning-based Optimization of Electrode Manufacturing [61.27691515336054]
In this study, we tackle the issue of high-performance electrodes for desired battery application conditions.
We propose a powerful data-driven approach supported by a deterministic machine learning (ML)-assisted pipeline for bi-objective optimization of the electrochemical performance.
Our results suggested a high amount of active material, combined with intermediate values of solid content in the slurry and calendering degree, to achieve the optimal electrodes.
arXiv Detail & Related papers (2023-07-07T13:48:50Z) - Multi-Objective Optimization of Electrical Machines using a Hybrid
Data-and Physics-Driven Approach [0.0]
We present the application of a hybrid data-and physics-driven model for numerical optimization of permanent magnet synchronous machines (PMSM)
Following the data-driven supervised training, deep neural network (DNN) will act as a meta-model to characterize the electromagnetic behavior of PMSM.
These intermediate measures are then post-processed with various physical models to compute the required key performance indicators.
arXiv Detail & Related papers (2023-06-15T12:47:56Z) - Deep learning based Meta-modeling for Multi-objective Technology
Optimization of Electrical Machines [0.0]
We present the application of a variational auto-encoder to optimize two different machine technologies simultaneously.
After training, we employ a deep neural network and a decoder as meta-models to predict global key performance indicators.
arXiv Detail & Related papers (2023-06-15T12:33:39Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
Transformer models achieve superior accuracy across a wide range of applications.
The amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate.
There has been an increased focus on making Transformer models more efficient.
arXiv Detail & Related papers (2023-02-27T18:18:13Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.