論文の概要: From Hypothesis to Publication: A Comprehensive Survey of AI-Driven Research Support Systems
- arxiv url: http://arxiv.org/abs/2503.01424v1
- Date: Mon, 03 Mar 2025 11:27:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:25:13.381764
- Title: From Hypothesis to Publication: A Comprehensive Survey of AI-Driven Research Support Systems
- Title(参考訳): 仮説から出版へ:AI駆動型研究支援システムに関する総合的な調査
- Authors: Zekun Zhou, Xiaocheng Feng, Lei Huang, Xiachong Feng, Ziyun Song, Ruihan Chen, Liang Zhao, Weitao Ma, Yuxuan Gu, Baoxin Wang, Dayong Wu, Guoping Hu, Ting Liu, Bing Qin,
- Abstract要約: 近年、人工知能(AI)技術の急速な発展は、研究者にAIが研究を加速し、強化する方法を探るきっかけとなった。
本稿では,本領域の進展を体系的に概観する。
我々は,関連する研究を仮説定式化,仮説検証,原稿出版という3つの主要なカテゴリに分類する。
- 参考スコア(独自算出の注目度): 40.10425916520717
- License:
- Abstract: Research is a fundamental process driving the advancement of human civilization, yet it demands substantial time and effort from researchers. In recent years, the rapid development of artificial intelligence (AI) technologies has inspired researchers to explore how AI can accelerate and enhance research. To monitor relevant advancements, this paper presents a systematic review of the progress in this domain. Specifically, we organize the relevant studies into three main categories: hypothesis formulation, hypothesis validation, and manuscript publication. Hypothesis formulation involves knowledge synthesis and hypothesis generation. Hypothesis validation includes the verification of scientific claims, theorem proving, and experiment validation. Manuscript publication encompasses manuscript writing and the peer review process. Furthermore, we identify and discuss the current challenges faced in these areas, as well as potential future directions for research. Finally, we also offer a comprehensive overview of existing benchmarks and tools across various domains that support the integration of AI into the research process. We hope this paper serves as an introduction for beginners and fosters future research. Resources have been made publicly available at https://github.com/zkzhou126/AI-for-Research.
- Abstract(参考訳): 研究は人類文明の進歩を促進する基本的なプロセスであるが、研究者にはかなりの時間と努力を要する。
近年、人工知能(AI)技術の急速な発展は、研究者にAIが研究を加速し、強化する方法を探るきっかけとなった。
本稿では,この領域の進歩を体系的に概観する。
具体的には、関連する研究を仮説定式化、仮説検証、原稿出版の3つの主要なカテゴリに分類する。
仮説の定式化には知識合成と仮説生成が含まれる。
仮説検証には、科学的主張の検証、定理証明、実験検証が含まれる。
写本刊行物は、原稿の執筆と査読プロセスを含む。
さらに,これらの領域で直面する課題と今後の研究の方向性を明らかにし,議論する。
最後に、研究プロセスへのAIの統合をサポートするさまざまな領域にわたる既存のベンチマークとツールの概要も紹介します。
この論文が初心者の紹介として役立ち、今後の研究を促進することを願っている。
リソースはhttps://github.com/zkzhou126/AI-for-Researchで公開されている。
関連論文リスト
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
多くの新しいAIモデルとツールが提案され、世界中の研究者や学者が研究をより効果的かつ効率的に実施できるようにすることを約束している。
これらのツールの欠点と誤用の可能性に関する倫理的懸念は、議論の中で特に顕著な位置を占める。
論文 参考訳(メタデータ) (2025-02-07T18:26:45Z) - AIGS: Generating Science from AI-Powered Automated Falsification [17.50867181053229]
本稿では,重要な研究プロセスを代表する役割を担ったマルチエージェントシステムである,フルプロセスAIGSシステムのベビーステップとして,Baby-AIGSを提案する。
3つのタスクの実験では、Baby-AIGSは経験豊富な人間の研究者と同等ではないが、有意義な科学的発見を産み出すことができた。
論文 参考訳(メタデータ) (2024-11-17T13:40:35Z) - Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
科学文献の急激な増加は、研究者が最近の進歩と意義ある研究方向を見極めるのを困難にしている。
大規模言語モデル(LLM)の最近の発展は、新しい研究のアイデアを自動生成するための有望な道のりを示唆している。
本研究では, チェーン構造に関連文献を整理し, 研究領域の進展を効果的に反映する, LLMベースのエージェントであるChain-of-Ideas(CoI)エージェントを提案する。
論文 参考訳(メタデータ) (2024-10-17T03:26:37Z) - Generative AI Tools in Academic Research: Applications and Implications for Qualitative and Quantitative Research Methodologies [0.0]
本研究では,生成人工知能(GenAI)が学術研究に与える影響について検討し,質的・定量的データ分析への応用に焦点をあてる。
GenAIツールは急速に進化し、研究の生産性を高め、複雑な分析プロセスを民主化するための新たな可能性を提供する。
学術的実践への統合は、研究の完全性、セキュリティ、著作家精神、そして学術作品の変化する性質に関する重要な疑問を提起する。
論文 参考訳(メタデータ) (2024-08-13T13:10:03Z) - RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
本稿では,調査論文レビューの課題を分類問題として概念化するシステムであるRelevAI-Reviewerを提案する。
25,164のインスタンスからなる新しいデータセットを導入する。各インスタンスには1つのプロンプトと4つの候補論文があり、それぞれがプロンプトに関連している。
我々は,各論文の関連性を判断し,最も関連性の高い論文を識別できる機械学習(ML)モデルを開発した。
論文 参考訳(メタデータ) (2024-06-13T06:42:32Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
本稿では,研究者にパーソナライズされた効率的な調査支援を目的とした会話システムであるSurveyAgentを紹介する。
SurveyAgentは3つの重要なモジュールを統合している。文書を整理するための知識管理、関連する文献を発見するための勧告、より深いレベルでコンテンツを扱うためのクエリ回答だ。
本評価は,研究活動の合理化におけるSurveyAgentの有効性を実証し,研究者の科学文献との交流を促進する能力を示すものである。
論文 参考訳(メタデータ) (2024-04-09T15:01:51Z) - Characterising Research Areas in the field of AI [68.8204255655161]
トピックの共起ネットワーク上でクラスタリング分析を行うことで,主要な概念テーマを特定した。
その結果は、ディープラーニングや機械学習、物のインターネットといった研究テーマに対する学術的関心の高まりを浮き彫りにしている。
論文 参考訳(メタデータ) (2022-05-26T16:30:30Z) - Online Handbook of Argumentation for AI: Volume 1 [2.0620687400727093]
本巻は、OHAAI(Online Handbook of Argumentation for AI)の第1巻に選択された論文の改訂版を含む。
人工知能(AI)の分野としての論証は、知識の象徴的表現や実現不可能な推論に関心を持つ研究者にとって非常に重要である。
OHAAIは、AIに関連するあらゆる分野における議論の理論と応用に関する、最新のおよび今後の博士主導の研究を追跡するための研究ハブとして機能するように設計されている。
論文 参考訳(メタデータ) (2020-06-22T06:07:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。