論文の概要: An Efficient Learning Method to Connect Observables
- arxiv url: http://arxiv.org/abs/2503.01684v2
- Date: Thu, 06 Mar 2025 14:07:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 12:14:37.561116
- Title: An Efficient Learning Method to Connect Observables
- Title(参考訳): 可観測物体を接続する効率的な学習法
- Authors: Hang Yu, Takayuki Miyagi,
- Abstract要約: 本稿では,新しいモデルであるマルチパラメータ固有値問題(MEP)エミュレータを提案する。
新しい方法はエミュレータを接続し、可観測物から可観測物に直接予測を行う。
一次元格子上の簡単なシミュレーションによりMEPエミュレータの性能が確認できる。
- 参考スコア(独自算出の注目度): 6.165053219836395
- License:
- Abstract: Constructing fast and accurate surrogate models is a key ingredient for making robust predictions in many topics. We introduce a new model, the Multiparameter Eigenvalue Problem (MEP) emulator. The new method connects emulators and can make predictions directly from observables to observables. We present that the MEP emulator can be trained with data from Eigenvector Continuation (EC) and Parametric Matrix Model (PMM) emulators. A simple simulation on a one-dimensional lattice confirms the performance of the MEP emulator. Using $^{28}$O as an example, we also demonstrate that the predictive probability distribution of the target observables can be easily obtained through the new emulator.
- Abstract(参考訳): 高速で正確な代理モデルを構築することは、多くのトピックにおいて堅牢な予測を行う上で重要な要素である。
本稿では,新しいモデルであるMultiparameter Eigenvalue Problem (MEP)エミュレータを提案する。
新しい方法はエミュレータを接続し、可観測物から可観測物に直接予測を行う。
本稿では,MEPエミュレータをEigenvector Continuation(EC)とParametric Matrix Model(PMM)エミュレータからのデータでトレーニングすることができることを示す。
一次元格子上の簡単なシミュレーションによりMEPエミュレータの性能が確認できる。
例えば、$^{28}$O を用いて、対象の可観測物の予測確率分布が、新しいエミュレータによって容易に得られることを示す。
関連論文リスト
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - Task-customized Masked AutoEncoder via Mixture of Cluster-conditional
Experts [104.9871176044644]
Masked Autoencoder (MAE) は,モデル事前学習において有望な結果が得られる自己教師型学習手法である。
我々は、新しいMAEベースの事前学習パラダイム、Mixture of Cluster-conditional Experts (MoCE)を提案する。
MoCEは、クラスタ条件ゲートを使用して、各専門家にセマンティックなイメージのみをトレーニングする。
論文 参考訳(メタデータ) (2024-02-08T03:46:32Z) - PARSAC: Accelerating Robust Multi-Model Fitting with Parallel Sample
Consensus [26.366299016589256]
雑音データから幾何モデルの複数事例を頑健に推定するリアルタイム手法を提案する。
ニューラルネットワークは、入力データを潜在的モデルインスタンスを表すクラスタに分割する。
我々は、画像当たり5ミリ秒の推論時間を持つ複数の確立されたデータセットと同様に、これらに対して最先端のパフォーマンスを実証する。
論文 参考訳(メタデータ) (2024-01-26T14:54:56Z) - A Hybrid GNN approach for predicting node data for 3D meshes [0.0]
現在,有限要素法による最適パラメータの予測を行っている。
新たなデータシミュレーションの処理と生成を支援するハイブリッドアプローチを導入する。
新しいモデルは、シミュレーションを作成するために適用された場合、既存のPointNetや単純なグラフニューラルネットワークモデルよりも優れています。
論文 参考訳(メタデータ) (2023-10-23T08:47:27Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - Fast emulation of density functional theory simulations using
approximate Gaussian processes [0.6445605125467573]
シミュレーション出力を予測する第2の統計モデルは、モデルフィッティング中の完全なシミュレーションの代わりに使用できる。
我々は,観測データを用いた密度汎関数理論(DFT)モデルパラメータのキャリブレーションにエミュレータを用いた。
これらのDFTモデルの有用性は、観測されたデータに基づいて、実験的に観測されていない核種の性質に関する予測を行うことである。
論文 参考訳(メタデータ) (2022-08-24T05:09:36Z) - DiSECt: A Differentiable Simulator for Parameter Inference and Control
in Robotic Cutting [71.50844437057555]
軟質材料を切断するための最初の微分可能シミュレータであるDiSECtについて述べる。
シミュレータは、符号付き距離場に基づく連続接触モデルにより有限要素法を増強する。
このシミュレータは, 最先端の商用解法を用いて, 結果の力やフィールドに適合するようにキャリブレーションできることを示す。
論文 参考訳(メタデータ) (2022-03-19T07:27:19Z) - Self-learning Emulators and Eigenvector Continuation [0.0]
我々は、自己学習エミュレーションと呼ばれる新しい機械学習アプローチを用いて、制約方程式のシステムを効率的に解くことに重点を置いている。
自己学習エミュレータ(セルフラーニングエミュレータ、英: self-learning emulator)は、ある種の制御パラメータにまたがる方程式のシステムを迅速に解くことができる能動的学習プロトコルである。
代数方程式、線形および非線形微分方程式、線形および非線形固有値問題の解系に対する自己学習エミュレータの今後の応用を想定する。
論文 参考訳(メタデータ) (2021-07-28T16:00:47Z) - DriveGAN: Towards a Controllable High-Quality Neural Simulation [147.6822288981004]
DriveGANと呼ばれる新しい高品質のニューラルシミュレータを紹介します。
DriveGANは、異なるコンポーネントを監督なしで切り離すことによって制御性を達成する。
実世界の運転データ160時間を含む複数のデータセットでdriveganをトレーニングします。
論文 参考訳(メタデータ) (2021-04-30T15:30:05Z) - AutoSimulate: (Quickly) Learning Synthetic Data Generation [70.82315853981838]
目的の新たな微分可能近似に基づく最適な合成データ生成法を提案する。
提案手法は,学習データ生成の高速化(最大50Times$)と,実世界のテストデータセットの精度向上(+8.7%$)を実現している。
論文 参考訳(メタデータ) (2020-08-16T11:36:11Z) - Using Machine Learning to Emulate Agent-Based Simulations [0.0]
エージェントベースモデル(ABM)解析に用いる統計エミュレータとして,複数の機械学習手法の性能評価を行った。
エージェントベースのモデリングは、モデルに対するより堅牢な感度解析を容易にするため、エミュレーションに機械学習を用いる利点がある。
論文 参考訳(メタデータ) (2020-05-05T11:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。