論文の概要: Union of Experts: Adapting Hierarchical Routing to Equivalently Decomposed Transformer
- arxiv url: http://arxiv.org/abs/2503.02495v3
- Date: Tue, 23 Sep 2025 07:09:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-24 18:29:14.452931
- Title: Union of Experts: Adapting Hierarchical Routing to Equivalently Decomposed Transformer
- Title(参考訳): Union of Experts: 等価に分解されたトランスに階層的なルーティングを適用する
- Authors: Yujiao Yang, Jing Lian, Linhui Li,
- Abstract要約: 我々は、変圧器モデルを等価な専門家グループに分解するUnion-of-Experts (UoE)を提案する。
言語モデリングタスクでは、最高の性能のMoE法と比較して、UoEはパープレキシティの平均2.38の削減を実現している。
画像分類では、最高のモデルよりも平均精度が1.75%向上する。
- 参考スコア(独自算出の注目度): 7.230514235208748
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixture-of-Experts (MoE) enhances model performance while maintaining computational efficiency, making it well-suited for large-scale applications. Conventional mixture-of-experts (MoE) architectures suffer from suboptimal coordination dynamics, where isolated expert operations expose the model to overfitting risks. Moreover, they have not been effectively extended to attention blocks, which limits further efficiency improvements. To tackle these issues, we propose Union-of-Experts (UoE), which decomposes the transformer model into an equivalent group of experts and applies a hierarchical routing mechanism to allocate input subspaces to specialized experts. Our approach advances MoE design with four key innovations: (1) Constructing expert groups by partitioning non-MoE models into functionally equivalent specialists (2) Developing a hierarchical routing paradigm that integrates patch-wise data selection and expert selection strategies. (3) Extending the MoE design to attention blocks. (4) Proposing a hardware-optimized parallelization scheme that exploits batched matrix multiplications for efficient expert computation. The experiments demonstrate that our UoE model surpasses Full Attention, state-of-the-art MoEs and efficient transformers in several tasks across image and natural language domains. In language modeling tasks, UoE achieves an average reduction of 2.38 in perplexity compared to the best-performing MoE method with only 76% of its FLOPs. In the Long Range Arena benchmark, it demonstrates an average score at least 0.68% higher than all comparison models, with only 50% of the FLOPs of the best MoE method. In image classification, it yields an average accuracy improvement of 1.75% over the best model while maintaining comparable FLOPs. The source codes are available at https://github.com/YujiaoYang-work/UoE.
- Abstract(参考訳): Mixture-of-Experts (MoE) は計算効率を維持しながらモデル性能を向上させるため、大規模アプリケーションに適している。
従来のミックス・オブ・エキスパート(MoE)アーキテクチャは、専門家による独立した操作がモデルを過度に適合させるような、最適以下の調整のダイナミクスに悩まされる。
さらに、注意ブロックまで効果的に拡張されていないため、さらなる効率改善が制限されている。
これらの課題に対処するため,我々は,変圧器モデルを等価な専門家グループに分解するUnion-of-Experts (UoE)を提案し,入力部分空間を専門の専門家に割り当てるために階層的ルーティング機構を適用した。
提案手法は,(1)非MoEモデルを機能的に等価なスペシャリストに分割して専門家グループを構築すること,(2)パッチワイドなデータ選択と専門家の選択戦略を統合する階層的ルーティングパラダイムを開発すること,の4つの重要な革新によって,MoE設計を前進させる。
(3)MoE設計を注目ブロックに拡張する。
(4) バッチ行列乗算を利用したハードウェア最適化並列化手法の提案。
実験により、我々のUoEモデルは、画像領域と自然言語領域にわたる複数のタスクにおいて、フルアテンション、最先端のMoE、効率的なトランスフォーマーを超えることを示した。
言語モデリングタスクにおいて、UoEはFLOPの76%しか持たない最高の性能のMoE法と比較して、平均2.38パープレキシティの低下を達成する。
Long Range Arenaベンチマークでは、すべての比較モデルよりも平均スコアが0.68%高く、最良のMoE法のFLOPの50%しか示されていない。
画像分類では、比較可能なFLOPを維持しながら、最高のモデルよりも平均精度が1.75%向上する。
ソースコードはhttps://github.com/YujiaoYang-work/UoEで入手できる。
関連論文リスト
- ViLBench: A Suite for Vision-Language Process Reward Modeling [25.565912785217822]
本稿では,現在の視覚大言語モデル(VLLM)を2種類の報酬モデルとしてベンチマークする。
我々は、集中的なプロセス報酬信号を必要とするように設計された視覚言語ベンチマークViLBenchを紹介する。
本稿では,一般VLLMと報奨モデルとのギャップを埋めるための有望な経路を予め紹介する。
論文 参考訳(メタデータ) (2025-03-26T06:38:31Z) - VisualPRM: An Effective Process Reward Model for Multimodal Reasoning [76.35753243272521]
既存のマルチモーダル大言語モデル(MLLM)の推論能力を改善するVisualPRMを導入する。
我々のモデルは7つのマルチモーダル推論ベンチマークで5.9ポイントの改善を実現している。
マルチモーダルPRMの評価のために,人間に注釈付きステップワイズラベルを付したベンチマークであるVisualProcessBenchを提案する。
論文 参考訳(メタデータ) (2025-03-13T12:03:37Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
本稿では,既存の並列処理方式を超越したMoE用パイプラインスケジューラであるEPS-MoEを紹介する。
その結果,既存の並列推論手法と比較して,プリフィルスループットは52.4%向上した。
論文 参考訳(メタデータ) (2024-10-16T05:17:49Z) - MoE++: Accelerating Mixture-of-Experts Methods with Zero-Computation Experts [63.67734699877724]
MoE++は、Feed-Forward Network(FFN)とゼロ計算の専門家を統合した、汎用的で異種なMoEフレームワークである。
MoE++は、1.1-2.1xのエキスパートの前方スループットを同じサイズのバニラのMoEモデルと比較すると、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2024-10-09T18:01:27Z) - DA-MoE: Towards Dynamic Expert Allocation for Mixture-of-Experts Models [1.4255659581428335]
そこで本稿では,DA-MoEモデルに対して,有効トークン重要度に基づく可変数のエキスパートを動的に割り当てる手法を提案する。
提案手法は,最新のトランスフォーマーベースのMoEモデルをGLUEベンチマークで一貫した性能向上を実現している。
論文 参考訳(メタデータ) (2024-09-10T17:36:15Z) - Dynamic Mixture of Experts: An Auto-Tuning Approach for Efficient Transformer Models [33.834215393960605]
本稿では,トランスフォーマーに基づく基礎モデルのトレーニングと推論の効率を高めるために,DynMoE(Dynamic Mixture of Experts)技術を導入する。
DynMoEには、各トークンがアクティベートする専門家の数を自動的に決定できる新しいゲーティングメソッドが組み込まれている。
本研究は,視覚・言語タスクにおけるGMoEと視覚言語タスクにおけるMoE-LLaVAとの競合性能を比較検討した。
論文 参考訳(メタデータ) (2024-05-23T08:18:30Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
そこで我々は,MoEアーキテクチャをUni-MoEと呼ぶ一貫したMLLMを開発し,様々なモダリティを扱えるようにした。
具体的には、統一マルチモーダル表現のためのコネクタを持つモダリティ特化エンコーダを特徴とする。
マルチモーダルデータセットの包括的集合を用いた命令調整Uni-MoEの評価を行った。
論文 参考訳(メタデータ) (2024-05-18T12:16:01Z) - Lory: Fully Differentiable Mixture-of-Experts for Autoregressive Language Model Pre-training [73.90260246781435]
私たちは、このようなアーキテクチャを自動回帰言語モデルに拡張する最初のアプローチであるLoryを紹介します。
パラメータマッチングされた高密度モデルよりも、多種多様な下流タスクにおいて顕著な性能向上を示す。
セグメントレベルのルーティングにもかかわらず、Loryモデルはトークンレベルのルーティングを備えた最先端のMoEモデルと比較して、競合的なパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-05-06T03:06:33Z) - Harder Tasks Need More Experts: Dynamic Routing in MoE Models [58.18526590138739]
本稿では,Mixture of Experts(MoE)モデルのための新しい動的専門家選択フレームワークを提案する。
提案手法は,各入力に対する専門家選択の信頼性レベルに基づいて,専門家を動的に選択する。
論文 参考訳(メタデータ) (2024-03-12T13:41:15Z) - An Empirical Study of Multimodal Model Merging [148.48412442848795]
モデルマージは、異なるタスクでトレーニングされた複数のモデルを融合してマルチタスクソリューションを生成するテクニックである。
我々は、モダリティ固有のアーキテクチャのビジョン、言語、およびクロスモーダルトランスフォーマーをマージできる新しい目標に向けて研究を行っている。
本稿では,重み間の距離を推定し,マージ結果の指標となる2つの指標を提案する。
論文 参考訳(メタデータ) (2023-04-28T15:43:21Z) - Adapted Multimodal BERT with Layer-wise Fusion for Sentiment Analysis [84.12658971655253]
本稿では,マルチモーダルタスクのためのBERTベースのアーキテクチャであるAdapted Multimodal BERTを提案する。
アダプタはタスクの事前訓練された言語モデルを手動で調整し、融合層はタスク固有の層ワイドな音声視覚情報とテキストBERT表現を融合させる。
われわれは、このアプローチがより効率的なモデルにつながり、微調整されたモデルよりも優れ、ノイズの入力に堅牢であることを示した。
論文 参考訳(メタデータ) (2022-12-01T17:31:42Z) - Squeezeformer: An Efficient Transformer for Automatic Speech Recognition [99.349598600887]
Conformerは、そのハイブリッドアテンション・コンボリューションアーキテクチャに基づいて、様々な下流音声タスクの事実上のバックボーンモデルである。
Squeezeformerモデルを提案する。これは、同じトレーニングスキームの下で、最先端のASRモデルよりも一貫して優れている。
論文 参考訳(メタデータ) (2022-06-02T06:06:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。