論文の概要: Efficient Long Sequential Low-rank Adaptive Attention for Click-through rate Prediction
- arxiv url: http://arxiv.org/abs/2503.02542v2
- Date: Mon, 24 Mar 2025 13:16:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 16:32:16.56194
- Title: Efficient Long Sequential Low-rank Adaptive Attention for Click-through rate Prediction
- Title(参考訳): クリックスルーレート予測のための高効率長周期低ランク適応アテンション
- Authors: Xin Song, Xiaochen Li, Jinxin Hu, Hong Wen, Zulong Chen, Yu Zhang, Xiaoyi Zeng, Jing Zhang,
- Abstract要約: 本稿では,新しい注意機構を提案する。
計算効率を確保しながら、既存の手法の欠点を克服する。
また、ユニークに設計された損失関数を統合して、注意の非線形性を保っている。
- 参考スコア(独自算出の注目度): 22.366063727224173
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the context of burgeoning user historical behavior data, Accurate click-through rate(CTR) prediction requires effective modeling of lengthy user behavior sequences. As the volume of such data keeps swelling, the focus of research has shifted towards developing effective long-term behavior modeling methods to capture latent user interests. Nevertheless, the complexity introduced by large scale data brings about computational hurdles. There is a pressing need to strike a balance between achieving high model performance and meeting the strict response time requirements of online services. While existing retrieval-based methods (e.g., similarity filtering or attention approximation) achieve practical runtime efficiency, they inherently compromise information fidelity through aggressive sequence truncation or attention sparsification. This paper presents a novel attention mechanism. It overcomes the shortcomings of existing methods while ensuring computational efficiency. This mechanism learn compressed representation of sequence with length $L$ via low-rank projection matrices (rank $r \ll L$), reducing attention complexity from $O(L)$ to $O(r)$. It also integrates a uniquely designed loss function to preserve nonlinearity of attention. In the inference stage, the mechanism adopts matrix absorption and prestorage strategies. These strategies enable it to effectively satisfy online constraints. Comprehensive offline and online experiments demonstrate that the proposed method outperforms current state-of-the-art solutions.
- Abstract(参考訳): ユーザの履歴行動データを膨らませる文脈では、正確なクリックスルー率(CTR)予測は、長いユーザの行動シーケンスを効果的にモデル化する必要がある。
このようなデータの量が膨らみ続けている中、研究の焦点は、潜伏するユーザの関心を捉えるための効果的な長期的な行動モデリング手法の開発に向けられている。
それでも、大規模なデータによって引き起こされる複雑さは、計算のハードルをもたらす。
高いモデルパフォーマンスを達成することと、オンラインサービスの厳格な応答時間要件を満たすことのバランスを取る必要がある。
既存の検索に基づく手法(例えば類似度フィルタリングやアテンション近似)は実用的な実行効率を実現するが、アグレッシブ・シーケンス・トランケーション(英語版)やアテンション・スパシフィケーション(英語版)によって本質的に情報忠実性を損なう。
本稿では,新しい注意機構を提案する。
計算効率を確保しながら、既存の手法の欠点を克服する。
このメカニズムは、低ランク射影行列(rank $r \ll L$)を通して長さ$L$の圧縮表現を学び、注意の複雑さを$O(L)$から$O(r)$に下げる。
また、ユニークに設計された損失関数を統合して、注意の非線形性を保っている。
推論段階では、このメカニズムはマトリックス吸収と保存戦略を採用する。
これらの戦略により、オンラインの制約を効果的に満たすことができる。
総合的なオフラインおよびオンライン実験により、提案手法が現在の最先端ソリューションより優れていることを示す。
関連論文リスト
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
インフルエンサーベースのアンラーニングは、個別のトレーニングサンプルがモデルパラメータに与える影響を再トレーニングせずに推定する顕著なアプローチとして現れてきた。
本稿では,暗記(増分学習)と忘れ(未学習)の理論的関連性を確立する。
本稿では、インフルエンス近似アンラーニングアルゴリズムを導入し、インクリメンタルな視点から効率的なマシンアンラーニングを行う。
論文 参考訳(メタデータ) (2025-07-31T05:34:27Z) - Attention Condensation via Sparsity Induced Regularized Training [0.0]
自己注意は、コンテキストウィンドウが拡大するにつれて、トランスフォーマーの推論時間を支配する。
我々は,大規模言語モデルにおける注意分散の理論的枠組みを拡張した。
カスタマイズされた損失関数は、注目行列の上位要素の数を制限することで、空間性を強制するように設計されている。
論文 参考訳(メタデータ) (2025-03-03T14:09:13Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - Linear-Time User-Level DP-SCO via Robust Statistics [55.350093142673316]
ユーザレベルの差分プライベート凸最適化(DP-SCO)は、マシンラーニングアプリケーションにおけるユーザのプライバシ保護の重要性から、大きな注目を集めている。
微分プライベート勾配勾配(DP-SGD)に基づくような現在の手法は、しばしば高雑音蓄積と準最適利用に苦しむ。
これらの課題を克服するために、ロバストな統計、特に中央値とトリミング平均を利用する新しい線形時間アルゴリズムを導入する。
論文 参考訳(メタデータ) (2025-02-13T02:05:45Z) - ExpertFlow: Optimized Expert Activation and Token Allocation for Efficient Mixture-of-Experts Inference [41.41316718220569]
ExpertFlowは、柔軟なルーティングを調整し、CPUとGPU間の効率的な専門家スケジューリングを可能にすることで、推論効率を向上させるように設計されている。
実験により、ExpertFlowは最大93.72%のGPUメモリを節約し、ベースライン法に比べて推論速度を2~10倍に向上することを示した。
論文 参考訳(メタデータ) (2024-10-23T15:24:54Z) - Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning [0.0]
パティオ時間予測は、輸送システム、物流、サプライチェーン管理など、様々な分野において重要な役割を担っている。
本稿では,オープンソースの大規模・小規模言語モデル(LLM,LM)と従来の予測手法を組み合わせたハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2024-08-26T16:11:53Z) - ELASTIC: Efficient Linear Attention for Sequential Interest Compression [5.689306819772134]
最先端のシーケンシャルレコメンデーションモデルは、トランスフォーマーの注意機構に大きく依存している。
逐次的関心圧縮のための効率的な線形注意法であるELASTICを提案する。
我々は、様々な公開データセットに関する広範な実験を行い、それをいくつかの強力なシーケンシャルなレコメンデータと比較する。
論文 参考訳(メタデータ) (2024-08-18T06:41:46Z) - Faster Diffusion Action Segmentation [9.868244939496678]
時間的行動分類(TAS)はビデオ解析において不可欠な課題であり、連続したフレームを別のアクションセグメントに分割し分類することを目的としている。
拡散モデルの最近の進歩は、安定したトレーニングプロセスと高品質な生成能力により、TASタスクにおいて大きな成功を収めている。
本稿では,効率的かつ高性能なTASアルゴリズムであるEffiDiffActを提案する。
論文 参考訳(メタデータ) (2024-08-04T13:23:18Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - Short-Long Convolutions Help Hardware-Efficient Linear Attention to Focus on Long Sequences [60.489682735061415]
本稿では,状態空間モデルを短時間の畳み込みに置き換えたCHELAを提案する。
提案手法の有効性を示すために,Long Range Arenaベンチマークと言語モデリングタスクについて実験を行った。
論文 参考訳(メタデータ) (2024-06-12T12:12:38Z) - Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
我々は、シーケンス固有のモデルベースのオートエンコーダをトレーニングすることで、そのようなデータの必要性を軽減する、深層無学習の自己教師付き学習を導入する。
提案手法は, 監視対象の性能を超過する。
論文 参考訳(メタデータ) (2024-03-25T17:40:32Z) - Online Tensor Inference [0.0]
従来のオフライン学習は、各計算繰り返しにおける全てのデータの保存と利用を伴い、高次元テンソルデータには実用的ではない。
既存の低ランクテンソル法は、オンラインの方法での統計的推論能力に欠ける。
本手法では,広範囲なメモリ要求を伴わずに効率的なリアルタイムデータ処理を実現するため,グラディエント・Descent (SGD) を用いる。
論文 参考訳(メタデータ) (2023-12-28T16:37:48Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
ノードレベルのグラフ異常検出(GAD)は、医学、ソーシャルネットワーク、eコマースなどの分野におけるグラフ構造化データから異常ノードを特定する上で重要な役割を果たす。
本稿では,GADの効率を向上させるために,PREM (preprocessing and Matching) という簡単な手法を提案する。
我々のアプローチは、強力な異常検出機能を維持しながら、GADを合理化し、時間とメモリ消費を削減します。
論文 参考訳(メタデータ) (2023-10-18T02:59:57Z) - Split-Boost Neural Networks [1.1549572298362787]
本稿では,スプリットブートと呼ばれるフィードフォワードアーキテクチャの革新的なトレーニング戦略を提案する。
このような新しいアプローチは、最終的に正規化項を明示的にモデル化することを避けることができる。
提案した戦略は、ベンチマーク医療保険設計問題内の実世界の(匿名化された)データセットでテストされる。
論文 参考訳(メタデータ) (2023-09-06T17:08:57Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
弱い監督下での映像異常検出は重大な課題を呈する。
本稿では,効率的なコンテキストモデリングとセマンティック識別性の向上に焦点をあてた,弱教師付き異常検出フレームワークを提案する。
提案手法は,特定の異常なサブクラスの検出精度を大幅に向上させ,その実用的価値と有効性を裏付けるものである。
論文 参考訳(メタデータ) (2023-06-26T06:45:16Z) - Learning Self-Modulating Attention in Continuous Time Space with
Applications to Sequential Recommendation [102.24108167002252]
本稿では,複雑で非線形に進化する動的ユーザの嗜好をモデル化する,自己変調型注意ネットワークを提案する。
提案手法がトップNシーケンシャルなレコメンデーションタスクに与える影響を実証的に示すとともに,3つの大規模実世界のデータセットによる結果から,我々のモデルが最先端のパフォーマンスを達成できることを示す。
論文 参考訳(メタデータ) (2022-03-30T03:54:11Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Untangling tradeoffs between recurrence and self-attention in neural
networks [81.30894993852813]
本稿では,再帰的ネットワークにおける自己注意が勾配伝播に与える影響を公式に分析する。
長期的な依存関係を捉えようとするとき、勾配をなくすことの問題を緩和することを証明する。
本稿では,スパース自己アテンションを反復的にスケーラブルに利用するための関連性スクリーニング機構を提案する。
論文 参考訳(メタデータ) (2020-06-16T19:24:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。