論文の概要: Multilingual Relative Clause Attachment Ambiguity Resolution in Large Language Models
- arxiv url: http://arxiv.org/abs/2503.02971v1
- Date: Tue, 04 Mar 2025 19:56:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 17:18:40.644862
- Title: Multilingual Relative Clause Attachment Ambiguity Resolution in Large Language Models
- Title(参考訳): 大規模言語モデルにおける多言語相対的クロースアタッチメントアンビグニティ分解
- Authors: So Young Lee, Russell Scheinberg, Amber Shore, Ameeta Agrawal,
- Abstract要約: 大型言語モデル (LLM) は相対節 (RC) のアタッチメントの曖昧さを解消する。
我々はLLMが言語の複雑さの中で人間的な解釈を達成できるかどうかを評価する。
我々は、英語、スペイン語、フランス語、ドイツ語、日本語、韓国語でモデルを評価する。
- 参考スコア(独自算出の注目度): 2.3749120526936465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study examines how large language models (LLMs) resolve relative clause (RC) attachment ambiguities and compares their performance to human sentence processing. Focusing on two linguistic factors, namely the length of RCs and the syntactic position of complex determiner phrases (DPs), we assess whether LLMs can achieve human-like interpretations amid the complexities of language. In this study, we evaluated several LLMs, including Claude, Gemini and Llama, in multiple languages: English, Spanish, French, German, Japanese, and Korean. While these models performed well in Indo-European languages (English, Spanish, French, and German), they encountered difficulties in Asian languages (Japanese and Korean), often defaulting to incorrect English translations. The findings underscore the variability in LLMs' handling of linguistic ambiguities and highlight the need for model improvements, particularly for non-European languages. This research informs future enhancements in LLM design to improve accuracy and human-like processing in diverse linguistic environments.
- Abstract(参考訳): 本研究では,大規模言語モデル(LLM)が関係節(RC)アタッチメントの曖昧さを解消し,その性能を人文処理と比較する。
2つの言語的要因、すなわち、RCの長さと複雑な決定詞句(DP)の統語的位置に着目し、LLMが言語の複雑さの中で人間的な解釈を達成できるかどうかを評価する。
本研究では,Claude,Gemini,LlamaなどのLLMを英語,スペイン語,フランス語,ドイツ語,日本語,韓国語など多言語で評価した。
これらのモデルはインド・ヨーロッパ語(英語、スペイン語、フランス語、ドイツ語)ではうまく機能したが、アジア語(日本語、韓国語)では難題に陥り、しばしば不正確な英訳をデフォルトとした。
この結果はLLMが言語的あいまいさを扱い、特に非ヨーロッパ言語においてモデルの改善の必要性を強調している。
本研究は,多様な言語環境におけるLLM設計の精度向上と人為的処理を図ったものである。
関連論文リスト
- PolyMath: Evaluating Mathematical Reasoning in Multilingual Contexts [79.84059473102778]
PolyMathは18の言語と4つの難易度をカバーする多言語数学的推論ベンチマークである。
我々のベンチマークは、包括性、言語多様性、高品質な翻訳の難しさを保証する。
論文 参考訳(メタデータ) (2025-04-25T15:39:04Z) - Who Relies More on World Knowledge and Bias for Syntactic Ambiguity Resolution: Humans or LLMs? [2.3749120526936465]
本研究では,近年の大型言語モデル (LLM) が,6つの類型的多様言語において,相対的節のアタッチメントのあいまいさをナビゲートする方法について検討する。
論文 参考訳(メタデータ) (2025-03-13T19:44:15Z) - Disparities in LLM Reasoning Accuracy and Explanations: A Case Study on African American English [66.97110551643722]
本研究では,Large Language Models (LLMs) 推論タスクにおける方言の相違について検討する。
LLMは、AAE入力に対するより正確な応答とより単純な推論チェーンと説明を生成する。
これらの知見は、LLMの処理方法と異なる言語品種の理由の体系的差異を浮き彫りにした。
論文 参考訳(メタデータ) (2025-03-06T05:15:34Z) - Thank You, Stingray: Multilingual Large Language Models Can Not (Yet) Disambiguate Cross-Lingual Word Sense [30.62699081329474]
本稿では,言語間感覚曖昧化のための新しいベンチマーク,StingrayBenchを紹介する。
インドネシア語とマレー語、インドネシア語とタガログ語、中国語と日本語、英語とドイツ語の4つの言語ペアで偽の友人を集めます。
各種モデルの解析において,高リソース言語に偏りが生じる傾向が見られた。
論文 参考訳(メタデータ) (2024-10-28T22:09:43Z) - Evaluating Knowledge-based Cross-lingual Inconsistency in Large Language Models [16.942897938964638]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示している。
彼らの成功にもかかわらず、これらのモデルはしばしば異なる言語で同じ概念を処理する際に大きな矛盾を示す。
本研究は,LLMにおける言語間不整合の存在,これらの不整合が現れる特定の側面,LLMの言語間整合性と多言語機能との相関の3つの主要な疑問に焦点をあてる。
論文 参考訳(メタデータ) (2024-07-01T15:11:37Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - Breaking Boundaries: Investigating the Effects of Model Editing on Cross-linguistic Performance [6.907734681124986]
本稿では,多言語文脈における知識編集技術を検討することにより,言語的平等の必要性を戦略的に識別する。
Mistral, TowerInstruct, OpenHathi, Tamil-Llama, Kan-Llamaなどのモデルの性能を,英語,ドイツ語,フランス語,イタリア語,スペイン語,ヒンディー語,タミル語,カンナダ語を含む言語で評価した。
論文 参考訳(メタデータ) (2024-06-17T01:54:27Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [51.8203871494146]
LLM(Large Language Models)の急速な開発は、自然言語処理における顕著な多言語機能を示している。
LLMのブレークスルーにもかかわらず、多言語シナリオの研究は依然として不十分である。
本調査は,多言語問題に対する研究コミュニティの取り組みを支援することを目的としており,LLMに基づく多言語自然言語処理における中核概念,鍵技術,最新の発展の包括的理解を提供する。
論文 参考訳(メタデータ) (2024-05-17T17:47:39Z) - Could We Have Had Better Multilingual LLMs If English Was Not the Central Language? [4.655168524016426]
大規模言語モデル(LLM)は、トレーニング対象の言語に対して強力な機械翻訳能力を示す。
我々の研究は、Llama2の翻訳能力について論じている。
実験の結果,7B Llama2モデルはこれまでに見たすべての言語に翻訳すると10 BLEU以上になることがわかった。
論文 参考訳(メタデータ) (2024-02-21T16:32:38Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
アフリカ語における言語間情報検索システムにおいて,大規模言語モデル (LLM) がリランカーとしてどのように機能するかを検討する。
私たちの実装は、英語と4つのアフリカの言語(ハウサ語、ソマリ語、スワヒリ語、ヨルバ語)を対象としています。
我々は、英語のクェリとアフリカの言葉の文節による言語横断的な格付けについて検討する。
論文 参考訳(メタデータ) (2023-12-26T18:38:54Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
大規模言語モデル(LLM)は、例外的な自然言語理解能力を示している。
本論文では,多言語環境下でのLLMの性能格差を体系的に評価する方法を提案する。
その結果,GPTは多言語設定において高い翻訳的振る舞いを示すことがわかった。
論文 参考訳(メタデータ) (2023-05-24T02:05:03Z) - Cross-Lingual Ability of Multilingual Masked Language Models: A Study of
Language Structure [54.01613740115601]
本稿では,構成順序,構成,単語共起の3つの言語特性について検討する。
我々の主な結論は、構成順序と単語共起の寄与は限定的である一方、構成は言語間移動の成功にとってより重要であるということである。
論文 参考訳(メタデータ) (2022-03-16T07:09:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。