A2Perf: Real-World Autonomous Agents Benchmark
- URL: http://arxiv.org/abs/2503.03056v1
- Date: Tue, 04 Mar 2025 23:41:02 GMT
- Title: A2Perf: Real-World Autonomous Agents Benchmark
- Authors: Ikechukwu Uchendu, Jason Jabbour, Korneel Van den Berghe, Joel Runevic, Matthew Stewart, Jeffrey Ma, Srivatsan Krishnan, Izzeddin Gur, Austin Huang, Colton Bishop, Paige Bailey, Wenjie Jiang, Ebrahim M. Songhori, Sergio Guadarrama, Jie Tan, Jordan K. Terry, Aleksandra Faust, Vijay Janapa Reddi,
- Abstract summary: A2Perf is a benchmark for three environments that resemble real-world domains: computer chip floorplanning, web navigation, and quadruped locomotion.<n>A2Perf provides metrics that track task performance, generalization, system resource efficiency, and reliability.<n>As an open-source benchmark, A2Perf is designed to remain accessible, up-to-date, and useful to the research community over the long term.
- Score: 44.86408776628399
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous agents and systems cover a number of application areas, from robotics and digital assistants to combinatorial optimization, all sharing common, unresolved research challenges. It is not sufficient for agents to merely solve a given task; they must generalize to out-of-distribution tasks, perform reliably, and use hardware resources efficiently during training and inference, among other requirements. Several methods, such as reinforcement learning and imitation learning, are commonly used to tackle these problems, each with different trade-offs. However, there is a lack of benchmarking suites that define the environments, datasets, and metrics which can be used to provide a meaningful way for the community to compare progress on applying these methods to real-world problems. We introduce A2Perf--a benchmark with three environments that closely resemble real-world domains: computer chip floorplanning, web navigation, and quadruped locomotion. A2Perf provides metrics that track task performance, generalization, system resource efficiency, and reliability, which are all critical to real-world applications. Using A2Perf, we demonstrate that web navigation agents can achieve latencies comparable to human reaction times on consumer hardware, reveal reliability trade-offs between algorithms for quadruped locomotion, and quantify the energy costs of different learning approaches for computer chip-design. In addition, we propose a data cost metric to account for the cost incurred acquiring offline data for imitation learning and hybrid algorithms, which allows us to better compare these approaches. A2Perf also contains several standard baselines, enabling apples-to-apples comparisons across methods and facilitating progress in real-world autonomy. As an open-source benchmark, A2Perf is designed to remain accessible, up-to-date, and useful to the research community over the long term.
Related papers
- DriveTransformer: Unified Transformer for Scalable End-to-End Autonomous Driving [62.62464518137153]
DriveTransformer is a simplified E2E-AD framework for the ease of scaling up.
It is composed of three unified operations: task self-attention, sensor cross-attention, temporal cross-attention.
It achieves state-of-the-art performance in both simulated closed-loop benchmark Bench2Drive and real world open-loop benchmark nuScenes with high FPS.
arXiv Detail & Related papers (2025-03-07T11:41:18Z) - Multi-Objective Optimization Using Adaptive Distributed Reinforcement Learning [8.471466670802815]
We propose a multi-objective, multi-agent reinforcement learning (MARL) algorithm with high learning efficiency and low computational requirements.
We test our algorithm in an ITS environment with edge cloud computing.
Our algorithm also addresses various practical concerns with its modularized and asynchronous online training method.
arXiv Detail & Related papers (2024-03-13T18:05:16Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning [55.08287089554127]
Open Radio Access Network systems, with their base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability.<n>We propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments.<n>We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments.
arXiv Detail & Related papers (2023-09-04T17:30:21Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
We propose an easy-to-implement online reinforcement learning (online RL) framework called textttMEX.
textttMEX integrates estimation and planning components while balancing exploration exploitation automatically.
It can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards.
arXiv Detail & Related papers (2023-05-29T17:25:26Z) - Real-time Trajectory-based Social Group Detection [22.86110112028644]
We propose a simple and efficient framework for social group detection.
Our approach explores the impact of motion trajectory on social grouping and utilizes a novel, reliable, and fast data-driven method.
Our experiments on the popular JRDBAct dataset reveal noticeable improvements in performance, with relative improvements ranging from 2% to 11%.
arXiv Detail & Related papers (2023-04-12T08:01:43Z) - Multi-Agent Reinforcement Learning for Long-Term Network Resource
Allocation through Auction: a V2X Application [7.326507804995567]
We formulate offloading of computational tasks from a dynamic group of mobile agents (e.g., cars) as decentralized decision making among autonomous agents.
We design an interaction mechanism that incentivizes such agents to align private and system goals by balancing between competition and cooperation.
We propose a novel multi-agent online learning algorithm that learns with partial, delayed and noisy state information.
arXiv Detail & Related papers (2022-07-29T10:29:06Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
Vehicle Re-Identification is one of the key elements in city-scale vehicle analytics systems.
Many state-of-the-art solutions for vehicle re-id mostly focus on improving the accuracy on existing re-id benchmarks and often ignore computational complexity.
We propose a simple yet effective hybrid solution empowered by self-supervised training which only uses a single network during inference time.
arXiv Detail & Related papers (2022-05-16T12:14:42Z) - Learning Centric Wireless Resource Allocation for Edge Computing:
Algorithm and Experiment [15.577056429740951]
Edge intelligence is an emerging network architecture that integrates sensing, communication, computing components, and supports various machine learning applications.
Existing methods ignore two important facts: 1) different models have heterogeneous demands on training data; 2) there is a mismatch between the simulated environment and the real-world environment.
This paper proposes the learning centric wireless resource allocation scheme that maximizes the worst learning performance of multiple tasks.
arXiv Detail & Related papers (2020-10-29T06:20:40Z) - Multi-scale Interaction for Real-time LiDAR Data Segmentation on an
Embedded Platform [62.91011959772665]
Real-time semantic segmentation of LiDAR data is crucial for autonomously driving vehicles.
Current approaches that operate directly on the point cloud use complex spatial aggregation operations.
We propose a projection-based method, called Multi-scale Interaction Network (MINet), which is very efficient and accurate.
arXiv Detail & Related papers (2020-08-20T19:06:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.