Generalized toric codes on twisted tori for quantum error correction
- URL: http://arxiv.org/abs/2503.03827v1
- Date: Wed, 05 Mar 2025 19:00:05 GMT
- Title: Generalized toric codes on twisted tori for quantum error correction
- Authors: Zijian Liang, Ke Liu, Hao Song, Yu-An Chen,
- Abstract summary: Kitaev toric code is widely considered one of the leading candidates for error correction in fault-tolerant quantum computation.<n>We introduce a ring-theoretic approach for efficiently analyzing topological CSS codes in two dimensions.
- Score: 9.623534315687825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Kitaev toric code is widely considered one of the leading candidates for error correction in fault-tolerant quantum computation. However, direct methods to increase its logical dimensions, such as lattice surgery or introducing punctures, often incur prohibitive overheads. In this work, we introduce a ring-theoretic approach for efficiently analyzing topological CSS codes in two dimensions, enabling the exploration of generalized toric codes with larger logical dimensions on twisted tori. Using Gr\"obner bases, we simplify stabilizer syndromes to efficiently identify anyon excitations and their geometric periodicities, even under twisted periodic boundary conditions. Since the properties of the codes are determined by the anyons, this approach allows us to directly compute the logical dimensions without constructing large parity-check matrices. Our approach provides a unified method for finding new quantum error-correcting codes and exhibiting their underlying topological orders via the Laurent polynomial ring. This framework naturally applies to bivariate bicycle codes. For example, we construct optimal weight-6 generalized toric codes on twisted tori with parameters $[[ n, k, d ]]$ for $n \leq 400$, yielding novel codes such as $[[120,8,12]]$, $[[186,10,14]]$, $[[210,10,16]]$, $[[248, 10, 18]]$, $[[254, 14, 16]]$, $[[294, 10, 20]]$, $[[310, 10, 22]]$, and $[[340, 16, 18]]$. Moreover, we present a new realization of the $[[360,12,24]]$ quantum code using the $(3,3)$-bivariate bicycle code on a twisted torus defined by the basis vectors $(0,30)$ and $(6,6)$, improving stabilizer locality relative to the previous construction. These results highlight the power of the topological order perspective in advancing the design and theoretical understanding of quantum low-density parity-check (LDPC) codes.
Related papers
- Planar quantum low-density parity-check codes with open boundaries [7.42725219729553]
We construct high-performance planar quantum low-density parity-check (qLDPC) codes with open boundaries.
These codes achieve an efficiency metric that is an order of magnitude greater than that of the surface code.
We observe fractal logical operators in the form of Sierpinski triangles, with the code distances scaling proportionally to the area of the truncated fractal.
arXiv Detail & Related papers (2025-04-11T18:00:05Z) - A topological theory for qLDPC: non-Clifford gates and magic state fountain on homological product codes with constant rate and beyond the $N^{1/3}$ distance barrier [0.0]
We develop a unified theory for fault-tolerant quantum computation in quantum low-density parity-check (qLDPC) and topological codes.
We show that there exist hidden simplicial complex structures encoding the topological data for all qLDPC and CSS codes obtained from product construction.
arXiv Detail & Related papers (2025-01-31T18:25:24Z) - SSIP: automated surgery with quantum LDPC codes [55.2480439325792]
We present Safe Surgery by Identifying Pushouts (SSIP), an open-source lightweight Python package for automating surgery between qubit CSS codes.
Under the hood, it performs linear algebra over $mathbbF$ governed by universal constructions in the category of chain complexes.
We show that various logical measurements can be performed cheaply by surgery without sacrificing the high code distance.
arXiv Detail & Related papers (2024-07-12T16:50:01Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Logical Error Rates of XZZX and Rotated Quantum Surface Codes [9.69910104594168]
We present theoretical formulas based on recent advancements in understanding the weight distribution of stabilizer codes.
We observe that the logical error rate approaches $p_mathrmL to 10 p2$ for the rotated $[9,1,3]]$ XZZX code and $p_mathrmL to 18.3 p2$ for the $[13,1,3]]$ surface code.
Our findings demonstrate that implementing both rotation and XZZX modifications simultaneously can lead to suboptimal performance.
arXiv Detail & Related papers (2023-12-28T15:09:48Z) - Extracting topological orders of generalized Pauli stabilizer codes in two dimensions [5.593891873998947]
We introduce an algorithm for extracting topological data from translation invariant generalized Pauli stabilizer codes in two-dimensional systems.
The algorithm applies to $mathbbZ_d$ qudits, including instances where $d$ is a nonprime number.
arXiv Detail & Related papers (2023-12-18T13:18:19Z) - Pseudonorm Approachability and Applications to Regret Minimization [73.54127663296906]
We convert high-dimensional $ell_infty$-approachability problems to low-dimensional pseudonorm approachability problems.
We develop an algorithmic theory of pseudonorm approachability, analogous to previous work on approachability for $ell$ and other norms.
arXiv Detail & Related papers (2023-02-03T03:19:14Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
This paper explores the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds.
We engineer an error bias at the lowest level of encoding using the surface code.
We then address this bias at a higher level of encoding using a lattice-surgery surface code bus.
arXiv Detail & Related papers (2022-12-03T06:16:07Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Divisible Codes for Quantum Computation [0.6445605125467572]
Divisible codes are defined by the property that codeword weights share a common divisor greater than one.
This paper explores how they can be used to protect quantum information as it is transformed by logical gates.
arXiv Detail & Related papers (2022-04-27T20:18:51Z) - Morphing quantum codes [77.34726150561087]
We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
arXiv Detail & Related papers (2021-12-02T17:43:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.