論文の概要: Guidelines for Applying RL and MARL in Cybersecurity Applications
- arxiv url: http://arxiv.org/abs/2503.04262v1
- Date: Thu, 06 Mar 2025 09:46:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:59:57.229925
- Title: Guidelines for Applying RL and MARL in Cybersecurity Applications
- Title(参考訳): サイバーセキュリティ分野におけるRLとMARLの適用ガイドライン
- Authors: Vasilios Mavroudis, Gregory Palmer, Sara Farmer, Kez Smithson Whitehead, David Foster, Adam Price, Ian Miles, Alberto Caron, Stephen Pasteris,
- Abstract要約: 自動サイバー防衛(ACD)における課題に対処するための有望な手法として、強化学習(RL)とマルチエージェント強化学習(MARL)が出現している。
本報告では、サイバーセキュリティの専門家や研究者に対して、特定のユースケースに対するRLとMARLの適合性を評価するための、構造化されたガイドラインを提供する。
また、重要なアルゴリズムアプローチ、実装上の課題、データ不足や敵対的干渉といった実世界の制約についても論じている。
- 参考スコア(独自算出の注目度): 3.4430282317302408
- License:
- Abstract: Reinforcement Learning (RL) and Multi-Agent Reinforcement Learning (MARL) have emerged as promising methodologies for addressing challenges in automated cyber defence (ACD). These techniques offer adaptive decision-making capabilities in high-dimensional, adversarial environments. This report provides a structured set of guidelines for cybersecurity professionals and researchers to assess the suitability of RL and MARL for specific use cases, considering factors such as explainability, exploration needs, and the complexity of multi-agent coordination. It also discusses key algorithmic approaches, implementation challenges, and real-world constraints, such as data scarcity and adversarial interference. The report further outlines open research questions, including policy optimality, agent cooperation levels, and the integration of MARL systems into operational cybersecurity frameworks. By bridging theoretical advancements and practical deployment, these guidelines aim to enhance the effectiveness of AI-driven cyber defence strategies.
- Abstract(参考訳): Reinforcement Learning (RL) と Multi-Agent Reinforcement Learning (MARL) は、自動サイバー防衛(ACD)における課題に対処するための有望な方法論として登場した。
これらの技術は、高次元の対角的環境において適応的な意思決定能力を提供する。
本報告では, サイバーセキュリティの専門家と研究者を対象に, 説明可能性, 調査ニーズ, マルチエージェント調整の複雑さなどの要因を考慮し, 特定のユースケースに対するRLとMARLの適合性を評価するための一連のガイドラインを提供する。
また、重要なアルゴリズムアプローチ、実装上の課題、データ不足や敵対的干渉といった実世界の制約についても論じている。
報告書はさらに、政策の最適性、エージェント協力レベル、MARLシステムの運用サイバーセキュリティフレームワークへの統合など、オープンな研究課題を概説している。
これらのガイドラインは、理論的進歩と実践的な展開をブリッジすることで、AIによるサイバー防衛戦略の有効性を高めることを目的としている。
関連論文リスト
- EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning [69.55982246413046]
戦略的推論のための明示的なポリシー最適化(EPO)を提案する。
EPOはオープンなアクション空間で戦略を提供し、任意のLLMエージェントにプラグインすることで、ゴール指向の振る舞いを動機付けることができる。
社会的および物理的領域にわたる実験は、EPOの長期的なゴールアライメント能力を示す。
論文 参考訳(メタデータ) (2025-02-18T03:15:55Z) - Agentic LLM Framework for Adaptive Decision Discourse [2.4919169815423743]
本研究では,実世界のエージェント型大規模言語モデル(LLM)フレームワークを紹介する。
従来の意思決定支援ツールとは異なり、このフレームワークは対話、トレードオフ探索、エージェント間の相互作用によって生成される創発的なシナジーを強調している。
その結果、第1次探索がいかに堅牢で公平なレコメンデーションパスを育むかが明らかとなった。
論文 参考訳(メタデータ) (2025-02-16T03:46:37Z) - Comprehensive Survey on Adversarial Examples in Cybersecurity: Impacts, Challenges, and Mitigation Strategies [4.606106768645647]
広告敵例(AE)は、ディープラーニングベースのシステムの堅牢性と信頼性に重要な課題を提起する。
本稿では,主要なサイバーセキュリティアプリケーションに対するAE攻撃の影響を概観する。
我々は,近年の防御機構の進歩を探求し,グラデーションマスキング,対人訓練,検出技術について検討した。
論文 参考訳(メタデータ) (2024-12-16T01:54:07Z) - Multi-Agent Collaboration in Incident Response with Large Language Models [0.0]
インシデント対応(IR)はサイバーセキュリティの重要な側面であり、サイバー攻撃を効果的に対処するために、迅速な意思決定と協調的な努力が必要である。
大きな言語モデル(LLM)をインテリジェントエージェントとして活用することは、IRシナリオにおけるコラボレーションと効率を高めるための新しいアプローチを提供する。
本稿では,Backdoors & Breaches フレームワークを用いた LLM ベースのマルチエージェントコラボレーションの適用について検討する。
論文 参考訳(メタデータ) (2024-12-01T03:12:26Z) - A Comprehensive Survey of Reinforcement Learning: From Algorithms to Practical Challenges [2.2448567386846916]
強化学習(RL)は人工知能(AI)の強力なパラダイムとして登場した。
本稿では,多種多様なアルゴリズムを巧みに分析するRLの包括的調査を行う。
我々は、RLアルゴリズムの選択と実装に関する実践的な洞察を提供し、収束、安定性、探索-探索ジレンマといった共通の課題に対処する。
論文 参考訳(メタデータ) (2024-11-28T03:53:14Z) - SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
MFM(Multimodal foundation model)は、人工知能の大幅な進歩を表す。
本稿では,マルチモーダル学習におけるサイバーセーフティとサイバーセキュリティを概念化する。
我々は、これらの概念をMFMに統一し、重要な脅威を特定するための総合的知識体系化(SoK)を提案する。
論文 参考訳(メタデータ) (2024-11-17T23:06:20Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
戦略推論は、戦略を調整しながら、マルチエージェント設定における敵の行動を理解し、予測する必要がある。
大規模言語モデルを用いた戦略的推論に関連するスコープ,アプリケーション,方法論,評価指標について検討する。
戦略的推論を重要な認知能力として重要視し、将来の研究の方向性や潜在的な改善に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Safe and Robust Reinforcement Learning: Principles and Practice [0.0]
強化学習は比較的複雑なタスクの解決に顕著な成功を収めた。
現実のシナリオにおけるRLシステムのデプロイは、安全性と堅牢性に関する重大な課題を生じさせる。
本稿では, アルゴリズム, 倫理的, 実践的考察を含む安全で堅牢なRL景観の主次元について考察する。
論文 参考訳(メタデータ) (2024-03-27T13:14:29Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
複数のエージェントが無線ネットワーク上で協調できるコラボレーティブディープ強化学習(CDRL)アルゴリズムは有望なアプローチである。
本稿では,リソース制約のある無線セルネットワーク上で,意味的にリンクされたDRLタスクを持つ未学習エージェントのグループを効率的に協調させる,新しい意味認識型CDRL手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:24:47Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。