論文の概要: A Generalist Cross-Domain Molecular Learning Framework for Structure-Based Drug Discovery
- arxiv url: http://arxiv.org/abs/2503.04362v1
- Date: Thu, 06 Mar 2025 12:04:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:00:38.106670
- Title: A Generalist Cross-Domain Molecular Learning Framework for Structure-Based Drug Discovery
- Title(参考訳): 構造に基づく薬物発見のための汎用的クロスドメイン分子学習フレームワーク
- Authors: Yiheng Zhu, Mingyang Li, Junlong Liu, Kun Fu, Jiansheng Wu, Qiuyi Li, Mingze Yin, Jieping Ye, Jian Wu, Zheng Wang,
- Abstract要約: 構造に基づく薬物発見(Structure-based drug discovery、SBDD)は、標的タンパク質の詳細な物理的構造を利用して新しい薬物を開発する体系的な科学的プロセスである。
生体分子の事前学習モデルの最近の進歩は、様々な生化学的応用において顕著な成功を収めている。
- 参考スコア(独自算出の注目度): 32.573496601865465
- License:
- Abstract: Structure-based drug discovery (SBDD) is a systematic scientific process that develops new drugs by leveraging the detailed physical structure of the target protein. Recent advancements in pre-trained models for biomolecules have demonstrated remarkable success across various biochemical applications, including drug discovery and protein engineering. However, in most approaches, the pre-trained models primarily focus on the characteristics of either small molecules or proteins, without delving into their binding interactions which are essential cross-domain relationships pivotal to SBDD. To fill this gap, we propose a general-purpose foundation model named BIT (an abbreviation for Biomolecular Interaction Transformer), which is capable of encoding a range of biochemical entities, including small molecules, proteins, and protein-ligand complexes, as well as various data formats, encompassing both 2D and 3D structures. Specifically, we introduce Mixture-of-Domain-Experts (MoDE) to handle the biomolecules from diverse biochemical domains and Mixture-of-Structure-Experts (MoSE) to capture positional dependencies in the molecular structures. The proposed mixture-of-experts approach enables BIT to achieve both deep fusion and domain-specific encoding, effectively capturing fine-grained molecular interactions within protein-ligand complexes. Then, we perform cross-domain pre-training on the shared Transformer backbone via several unified self-supervised denoising tasks. Experimental results on various benchmarks demonstrate that BIT achieves exceptional performance in downstream tasks, including binding affinity prediction, structure-based virtual screening, and molecular property prediction.
- Abstract(参考訳): 構造に基づく薬物発見(Structure-based drug discovery、SBDD)は、標的タンパク質の詳細な物理的構造を利用して新しい薬物を開発する体系的な科学的プロセスである。
生体分子の事前学習モデルの最近の進歩は、薬物発見やタンパク質工学など、様々な生化学的応用において顕著な成功を収めている。
しかし、ほとんどのアプローチでは、事前学習されたモデルは、SBDDに不可欠なドメイン間関係である結合相互作用を解明することなく、主に小さな分子またはタンパク質の特性に焦点を当てている。
このギャップを埋めるために、BIT(Biomolecular Interaction Transformerの略)と呼ばれる汎用基盤モデルを提案し、2次元構造と3次元構造の両方を包含する様々なデータ形式だけでなく、小さな分子、タンパク質、タンパク質-リガンド複合体を含む様々な生化学的実体をコードすることができる。
具体的には,種々の生化学ドメインの生体分子を扱うためのMixture-of-Domain-Experts (MoDE)と,分子構造における位置依存性を捉えるMixture-of-Structure-Experts (MoSE)を紹介する。
提案手法により、BITは深層融合とドメイン特異的エンコーディングの両方を達成でき、タンパク質-リガンド複合体内の分子間相互作用を効果的に捉えることができる。
次に,共有トランスフォーマーのバックボーン上で,複数の自己監督型分母タスクを通じてクロスドメイン事前学習を行う。
様々なベンチマーク実験の結果、BITは結合親和性予測、構造に基づく仮想スクリーニング、分子特性予測など、下流タスクにおいて例外的な性能を発揮することが示された。
関連論文リスト
- Life-Code: Central Dogma Modeling with Multi-Omics Sequence Unification [53.488387420073536]
Life-Codeは、様々な生物学的機能にまたがる包括的なフレームワークである。
Life-Codeは3つのオミクスにまたがる様々なタスクで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-02-11T06:53:59Z) - UniIF: Unified Molecule Inverse Folding [67.60267592514381]
全分子の逆折り畳みのための統一モデルUniIFを提案する。
提案手法は,全タスクにおける最先端手法を超越した手法である。
論文 参考訳(メタデータ) (2024-05-29T10:26:16Z) - BInD: Bond and Interaction-generating Diffusion Model for Multi-objective Structure-based Drug Design [0.0]
本稿では,多目的薬物設計のための知識ベースガイダンスを用いた拡散モデルBInDを提案する。
BInDは、分子と標的タンパク質との相互作用を同時に生成し、全ての主要な目的を等しく考慮するよう設計されている。
総合評価では、BInDは全ての目的に対して頑健な性能を達成し、それぞれが最先端の手法よりも優れ、適合していることを示している。
論文 参考訳(メタデータ) (2024-05-27T06:26:55Z) - Multi-channel learning for integrating structural hierarchies into context-dependent molecular representation [10.025809630976065]
本稿では,より堅牢で一般化可能な化学知識を学習する,新しい事前学習フレームワークを提案する。
提案手法は,種々の分子特性ベンチマークにおける競合性能を示す。
論文 参考訳(メタデータ) (2023-11-05T23:47:52Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
ポケット特異的分子生成とエラボレーションのための機能群に基づく拡散モデルD3FGを提案する。
D3FGは分子を、剛体として定義される官能基と質量点としてのリンカーの2つのカテゴリに分解する。
実験では, より現実的な3次元構造, タンパク質標的に対する競合親和性, 薬物特性の良好な分子を生成できる。
論文 参考訳(メタデータ) (2023-05-30T06:41:20Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Widely Used and Fast De Novo Drug Design by a Protein Sequence-Based
Reinforcement Learning Model [4.815696666006742]
構造に基づくde novo法は、薬物と標的の相互作用を深く生成するアーキテクチャに組み込むことによって、アクティブなデータ不足を克服することができる。
本稿では,医薬品発見のためのタンパク質配列に基づく拡張学習モデルについて紹介する。
概念実証として、RLモデルを用いて分子を4つのターゲットに設計した。
論文 参考訳(メタデータ) (2022-08-14T10:41:52Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - A silicon qubit platform for in situ single molecule structure
determination [0.7187911114620571]
単分子レベルでの一般、不均一、過渡的または内在的に混乱したタンパク質系の個々のコンフォメーションのインスタンスをイメージングすることは、構造生物学における顕著な課題の1つである。
ここでは、シリコンベースのスピン量子ビットの利点を取り入れた単一の分子イメージングプラットフォームを設計することで、この問題に取り組む。
我々は,本プラットフォームが自然環境における個々の分子系のスケーラブルな原子レベル構造決定を可能にすることを,詳細なシミュレーションを通じて実証した。
論文 参考訳(メタデータ) (2021-12-07T10:42:09Z) - CogMol: Target-Specific and Selective Drug Design for COVID-19 Using
Deep Generative Models [74.58583689523999]
新規なウイルスタンパク質を標的とした新規な薬物様小分子を設計するためのエンド・ツー・エンドのフレームワークであるCogMolを提案する。
CogMolは、分子SMILES変分オートエンコーダ(VAE)の適応事前学習と、効率的なマルチ属性制御サンプリングスキームを組み合わせる。
CogMolは、高目標特異性と選択性を有する合成可能で低毒性な薬物様分子の多制約設計を扱う。
論文 参考訳(メタデータ) (2020-04-02T18:17:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。