論文の概要: STX-Search: Explanation Search for Continuous Dynamic Spatio-Temporal Models
- arxiv url: http://arxiv.org/abs/2503.04509v1
- Date: Thu, 06 Mar 2025 14:55:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 17:59:00.887522
- Title: STX-Search: Explanation Search for Continuous Dynamic Spatio-Temporal Models
- Title(参考訳): STX-Search: 連続的動的時空間モデルのための説明探索
- Authors: Saif Anwar, Nathan Griffiths, Thomas Popham, Abhir Bhalerao,
- Abstract要約: モデルからの予測を理解することは 信頼性と信頼性を確保するために重要です
連続時間動的グラフデータに基づいてトレーニングされたモデルについて、既存の方法はほとんど説明できない。
本稿では,新しい探索戦略と目的関数を導入し,忠実で解釈可能な説明を求める。
- 参考スコア(独自算出の注目度): 3.587367153279351
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent improvements in the expressive power of spatio-temporal models have led to performance gains in many real-world applications, such as traffic forecasting and social network modelling. However, understanding the predictions from a model is crucial to ensure reliability and trustworthiness, particularly for high-risk applications, such as healthcare and transport. Few existing methods are able to generate explanations for models trained on continuous-time dynamic graph data and, of these, the computational complexity and lack of suitable explanation objectives pose challenges. In this paper, we propose $\textbf{S}$patio-$\textbf{T}$emporal E$\textbf{X}$planation $\textbf{Search}$ (STX-Search), a novel method for generating instance-level explanations that is applicable to static and dynamic temporal graph structures. We introduce a novel search strategy and objective function, to find explanations that are highly faithful and interpretable. When compared with existing methods, STX-Search produces explanations of higher fidelity whilst optimising explanation size to maintain interpretability.
- Abstract(参考訳): 時空間モデルの表現力の最近の向上は、交通予測やソーシャルネットワークのモデリングなど、現実の多くのアプリケーションにおいてパフォーマンスの向上につながっている。
しかしながら、モデルからの予測を理解することは、特に医療や輸送といったリスクの高いアプリケーションにおいて、信頼性と信頼性を確保するために不可欠である。
連続時間動的グラフデータに基づいて訓練されたモデルについて、既存の手法はほとんど説明できないため、計算の複雑さと適切な説明目的の欠如が問題となる。
本稿では,静的および動的時間グラフ構造に適用可能なインスタンスレベルの説明を生成する新しい手法である$\textbf{S}$patio-$\textbf{T}$emporal E$\textbf{X}$planation $\textbf{Search}$ (STX-Search)を提案する。
本稿では,新しい探索戦略と目的関数を導入し,極めて忠実で解釈可能な説明を求める。
従来の手法と比較すると、STX-Searchは解釈可能性を維持するために説明サイズを最適化しながら高い忠実度の説明を生成する。
関連論文リスト
- Exploring Energy Landscapes for Minimal Counterfactual Explanations: Applications in Cybersecurity and Beyond [3.6963146054309597]
説明可能な人工知能(XAI)において、対物的説明が顕著な方法として浮上している。
本稿では、摂動理論と統計力学を統合し、最小限の反実的説明を生成する新しい枠組みを提案する。
提案手法は,妥当性を維持しつつモデルの予測を変更するために必要な最小限の修正を系統的に同定する。
論文 参考訳(メタデータ) (2025-03-23T19:48:37Z) - Dynamical Diffusion: Learning Temporal Dynamics with Diffusion Models [71.63194926457119]
動的拡散(DyDiff, Dynamical Diffusion)は, 時間的に意識された前と逆のプロセスを含む理論的に健全なフレームワークである。
科学的時間的予測、ビデオ予測、時系列予測に関する実験は、動的拡散が時間的予測タスクのパフォーマンスを一貫して改善することを示した。
論文 参考訳(メタデータ) (2025-03-02T16:10:32Z) - TX-Gen: Multi-Objective Optimization for Sparse Counterfactual Explanations for Time-Series Classification [0.42105583610914427]
非支配的ソーティング遺伝的アルゴリズム(NSGA-II)に基づく反実的説明を生成する新しいアルゴリズムであるTX-Genを導入する。
フレキシブルな参照誘導機構を組み込むことにより,事前定義された仮定に頼ることなく,その妥当性と解釈性を向上させる。
論文 参考訳(メタデータ) (2024-09-14T15:13:28Z) - Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
モデルシフトに対する反ファクトの堅牢性を計算することはNP完全であることを示す。
本稿では,頑健性の厳密な推定を高い保証で実現する新しい確率論的手法を提案する。
論文 参考訳(メタデータ) (2024-07-10T09:13:11Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
パラメータと構造を同時に推定することで,最適化手法に大きな課題が生じることを示す。
モデルの正確な推定を実証するが、擬似的、解釈可能なモデルの推論を強制することは、難易度を劇的に高める。
論文 参考訳(メタデータ) (2024-04-10T14:38:58Z) - Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting [46.63798583414426]
時系列予測(LTSF)は時系列分析において重要なフロンティアである。
本研究は, 分析的および実証的な証拠から, 分解が過剰なモデルインフレーションを包含する鍵であることを実証する。
興味深いことに、時系列データの本質的なダイナミクスに分解を合わせることで、提案モデルは既存のベンチマークより優れている。
論文 参考訳(メタデータ) (2024-01-22T13:15:40Z) - Sparse Graphical Linear Dynamical Systems [1.6635799895254402]
時系列データセットは機械学習の中心であり、科学と工学の様々な分野に応用されている。
本研究は,共同グラフィカル・モデリング・フレームワークを導入することでギャップを埋める新しい手法を提案する。
本稿では,DGLASSOを提案する。DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO。
論文 参考訳(メタデータ) (2023-07-06T14:10:02Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Learning with Explanation Constraints [91.23736536228485]
我々は、説明がモデルの学習をどのように改善するかを分析するための学習理論フレームワークを提供する。
我々は,多数の合成および実世界の実験に対して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T15:06:47Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Understanding Neural Abstractive Summarization Models via Uncertainty [54.37665950633147]
seq2seq抽象要約モデルは、自由形式の方法でテキストを生成する。
モデルのトークンレベルの予測のエントロピー、すなわち不確実性について検討する。
要約とテキスト生成モデルをより広範囲に解析する上で,不確実性は有用であることを示す。
論文 参考訳(メタデータ) (2020-10-15T16:57:27Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Causal Inference with Deep Causal Graphs [0.0]
パラメトリック因果モデリング技術は、カウンターファクト推定の機能を提供することはめったにない。
Deep Causal Graphsは、因果分布をモデル化するニューラルネットワークに必要な機能の抽象的な仕様である。
複雑な相互作用をモデル化する上で,その表現力を示し,機械学習の説明可能性と公正性を示す。
論文 参考訳(メタデータ) (2020-06-15T13:03:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。