論文の概要: Sovereign Large Language Models: Advantages, Strategy and Regulations
- arxiv url: http://arxiv.org/abs/2503.04745v1
- Date: Wed, 05 Feb 2025 23:16:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-16 11:16:22.218257
- Title: Sovereign Large Language Models: Advantages, Strategy and Regulations
- Title(参考訳): 先進的な大規模言語モデル:アドバンテージ、戦略、規制
- Authors: Mykhailo Bondarenko, Sviatoslav Lushnei, Yurii Paniv, Oleksii Molchanovsky, Mariana Romanyshyn, Yurii Filipchuk, Artur Kiulian,
- Abstract要約: 本報告では,世界規模のLarge Language Models(LLM)開発に関連する重要なトレンド,課題,リスク,機会について分析する。
LLMの開発における全国的な経験を調査し、この分野への投資の可能性を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This report analyzes key trends, challenges, risks, and opportunities associated with the development of Large Language Models (LLMs) globally. It examines national experiences in developing LLMs and assesses the feasibility of investment in this sector. Additionally, the report explores strategies for implementing, regulating, and financing AI projects at the state level.
- Abstract(参考訳): 本報告では,世界規模のLarge Language Models(LLM)開発に関連する重要なトレンド,課題,リスク,機会について分析する。
LLMの開発における全国的な経験を調査し、この分野への投資の可能性を評価する。
さらに報告書では、国家レベルでAIプロジェクトを実施、規制、資金調達するための戦略についても検討している。
関連論文リスト
- A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks [5.0453036768975075]
MLLM(Large Language Model)は、テキスト、画像、ビデオ、オーディオを統合し、モーダルな理解と生成のためのAIシステムを実現する。
Bookは、スケーラビリティ、堅牢性、およびクロスモーダル学習における重要な課題に対処しながら、MLLM実装の顕著な点について検討している。
倫理的考察、責任あるAI開発、そして今後の方向性に関する議論をまとめると、この権威あるリソースは理論的な枠組みと実践的な洞察の両方を提供する。
論文 参考訳(メタデータ) (2024-11-09T20:56:23Z) - Risks, Causes, and Mitigations of Widespread Deployments of Large Language Models (LLMs): A Survey [0.0]
大規模言語モデル(LLM)は、テキスト生成、要約、分類において優れた能力を持つ自然言語処理(NLP)を変革した。
彼らの普及は、学術的完全性、著作権、環境への影響、データバイアス、公正性、プライバシといった倫理的考察など、多くの課題をもたらす。
本稿は、Google Scholarから体系的に収集・合成されたこれらの主題に関する文献に関する総合的な調査である。
論文 参考訳(メタデータ) (2024-08-01T21:21:18Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
大規模言語モデル(LLM)は金融分野における機械学習アプリケーションに新たな機会を開放した。
我々は、従来のプラクティスを変革し、イノベーションを促進する可能性に焦点を当て、様々な金融業務におけるLLMの適用について検討する。
本稿では,既存の文献を言語タスク,感情分析,財務時系列,財務推論,エージェントベースモデリング,その他の応用分野に分類するための調査を紹介する。
論文 参考訳(メタデータ) (2024-06-15T16:11:35Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
戦略推論は、戦略を調整しながら、マルチエージェント設定における敵の行動を理解し、予測する必要がある。
大規模言語モデルを用いた戦略的推論に関連するスコープ,アプリケーション,方法論,評価指標について検討する。
戦略的推論を重要な認知能力として重要視し、将来の研究の方向性や潜在的な改善に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Large Language Models for Forecasting and Anomaly Detection: A
Systematic Literature Review [10.325003320290547]
本稿では,Large Language Models (LLMs) の予測・異常検出への応用について概説する。
LLMは、パターンを特定し、将来の事象を予測し、様々な領域にまたがる異常な振る舞いを検出するために、広範囲なデータセットを解析し分析する大きな可能性を示してきた。
このレビューでは、膨大な歴史的データセットへの依存、さまざまな文脈における一般化可能性の問題、モデル幻覚の現象など、より広範な採用と有効性を阻害するいくつかの重要な課題を取り上げている。
論文 参考訳(メタデータ) (2024-02-15T22:43:02Z) - Revolutionizing Finance with LLMs: An Overview of Applications and Insights [45.660896719456886]
ChatGPTのような大規模言語モデル(LLM)はかなり進歩しており、様々な分野に適用されている。
これらのモデルは、財務報告の自動生成、市場のトレンド予測、投資家の感情分析、パーソナライズされた財務アドバイスの提供に利用されています。
論文 参考訳(メタデータ) (2024-01-22T01:06:17Z) - Multimodal Gen-AI for Fundamental Investment Research [2.559302299676632]
本報告では、従来の意思決定プロセスを再考する金融投資業界における変革的イニシアティブについて概説する。
基礎モデル(Llama2)上での微調整手法の有効性を評価し,アプリケーションレベルの目標を達成する。
このプロジェクトには、調査報告、投資メモ、市場ニュース、広範な時系列市場データなど、さまざまなコーパスデータセットが含まれている。
論文 参考訳(メタデータ) (2023-12-24T03:35:13Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。