論文の概要: Universal Narrative Model: an Author-centric Storytelling Framework for Generative AI
- arxiv url: http://arxiv.org/abs/2503.04844v2
- Date: Wed, 12 Mar 2025 18:26:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 19:21:27.970490
- Title: Universal Narrative Model: an Author-centric Storytelling Framework for Generative AI
- Title(参考訳): Universal Narrative Model: 生成AIのための著者中心のストーリーテリングフレームワーク
- Authors: Hank Gerba,
- Abstract要約: 著者を将来の物語デザインの中心に配置するオープンスタンダードであるユニバーサル・ナラティブ・モデル(UNM)を提案する。
客観的な物語モデルに従って著者の意図を符号化することにより、UNMは物語の移植性と、生成システムに対する意図に基づく制約を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Generative AI promises to finally realize dynamic, personalized storytelling technologies across a range of media. To date, experimentation with generative AI in the field of procedural narrative generation has been quite promising from a technical perspective. However, fundamental narrative dilemmas remain, such as the balance between player agency and narrative coherence, and no rigorous narrative standard has been proposed to specifically leverage the strengths of generative AI. In this paper, we propose the Universal Narrative Model (UNM), an open and extensible standard designed to place writers at the center of future narrative design workflows and enable interoperability across authoring platforms. By encoding an author's intent according to an objective narrative model, the UNM enables narrative portability as well as intent-based constraints for generative systems.
- Abstract(参考訳): Generative AIは、さまざまなメディアにわたるダイナミックでパーソナライズされたストーリーテリング技術を実現することを約束する。
これまで、手続き的物語生成の分野における生成的AIの実験は、技術的観点からかなり有望であった。
しかし、プレイヤーエージェンシーと物語コヒーレンスとのバランスのような基本的な物語ジレンマは残っており、生成AIの強みを具体的に活用するための厳密な物語標準は提案されていない。
本稿では,著者を将来の物語デザインワークフローの中心に配置し,オーサリングプラットフォーム間の相互運用性を実現するオープンで拡張可能な標準であるUniversal Narrative Model (UNM)を提案する。
客観的な物語モデルに従って著者の意図を符号化することにより、UNMは物語の移植性と、生成システムに対する意図に基づく制約を可能にする。
関連論文リスト
- StoryAgent: Customized Storytelling Video Generation via Multi-Agent Collaboration [88.94832383850533]
CSVG(Customized Storytelling Video Generation)のためのマルチエージェントフレームワークを提案する。
StoryAgentはCSVGを特殊エージェントに割り当てられた個別のサブタスクに分解し、プロの制作プロセスを反映する。
具体的には、撮影時間内整合性を高めるために、カスタマイズされたイメージ・ツー・ビデオ(I2V)手法であるLoRA-BEを導入する。
コントリビューションには、ビデオ生成タスクのための汎用フレームワークであるStoryAgentの導入や、プロタゴニストの一貫性を維持するための新しい技術が含まれている。
論文 参考訳(メタデータ) (2024-11-07T18:00:33Z) - Crafting Narrative Closures: Zero-Shot Learning with SSM Mamba for Short Story Ending Generation [0.0]
作家たちは創造的なブロックの瞬間に遭遇し、物語の進行路が曖昧になる。
この論文は、革新的なソリューションとして、与えられたプロンプトに基づいてストーリーを完成させるツールを提供することによって、そのような状況に対処するように設計されている。
短いストーリープロンプトを入力することで、ユーザーは1文以上で説明されたストーリーの結論を受け取ることができ、それによってAI駆動の創造性によってストーリーテリングプロセスが強化される。
論文 参考訳(メタデータ) (2024-10-04T18:56:32Z) - Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
本稿では,物語の執筆を特殊エージェントが取り組んだサブタスクに分解する,物語理論に触発された世代フレームワークを提案する。
エージェントの部屋は,専門的評価者が好むストーリーをベースラインシステムより生成することを示す。
論文 参考訳(メタデータ) (2024-10-03T15:44:42Z) - SARD: A Human-AI Collaborative Story Generation [0.0]
本研究では,大規模言語モデルを用いたマルチチャプタストーリ生成のためのドラッグアンドドロップ型ビジュアルインタフェースであるSARDを提案する。
SARDのユーザビリティとその創造性に対する評価は、物語のノードベースの可視化は、著者がメンタルモデルを構築するのに役立つかもしれないが、著者にとって不必要な精神的オーバーヘッドを生じさせることを示している。
また、AIはストーリーの複雑さに関係なく、語彙的に多様性の低いストーリーを生成することもわかりました。
論文 参考訳(メタデータ) (2024-03-03T17:48:42Z) - Generating Coherent Narratives by Learning Dynamic and Discrete Entity
States with a Contrastive Framework [68.1678127433077]
我々はトランスフォーマーモデルを拡張して,物語生成のためのエンティティ状態更新と文実現を動的に行う。
2つのナラティブデータセットの実験により、我々のモデルは強いベースラインよりも一貫性があり多様なナラティブを生成できることが示された。
論文 参考訳(メタデータ) (2022-08-08T09:02:19Z) - Guiding Neural Story Generation with Reader Models [5.935317028008691]
本稿では、読者モデルを用いてストーリーを推論するフレームワークであるReader Models(StoRM)によるストーリー生成について紹介する。
実験により、我々のモデルは、プロットの可視性やトピックの継続など、次元のベースラインをはるかに上回り、コヒーレントでオントピー的なストーリーを生み出すことが示された。
論文 参考訳(メタデータ) (2021-12-16T03:44:01Z) - Goal-Directed Story Generation: Augmenting Generative Language Models
with Reinforcement Learning [7.514717103747824]
本稿では,コンピュータ生成ストーリーのプロットを制御するために,深層強化学習と報酬形成を基礎とした2つの自動手法を提案する。
1つ目は、近似ポリシー最適化を利用して、既存のトランスフォーマーベースの言語モデルを微調整してテキスト継続を生成するが、目標探索も行う。
第2は、グラフを考慮したポリシーネットワークが使用する展開ストーリーから知識グラフを抽出し、言語モデルによって生成された候補継続を選択する。
論文 参考訳(メタデータ) (2021-12-16T03:34:14Z) - Inferring the Reader: Guiding Automated Story Generation with
Commonsense Reasoning [12.264880519328353]
生成プロセスにコモンセンス推論を導入するフレームワークであるCommonsense-inference Augmented Neural StoryTelling (CAST)を紹介する。
我々のCAST手法は,既存のモデルよりも,一文字と二文字の両方で,一貫性があり,オントピー的,楽しむことができる。
論文 参考訳(メタデータ) (2021-05-04T06:40:33Z) - Cue Me In: Content-Inducing Approaches to Interactive Story Generation [74.09575609958743]
本研究では,対話型物語生成の課題に焦点をあてる。
本稿では、この追加情報を効果的に活用するための2つのコンテンツ誘導手法を提案する。
自動評価と人的評価の両方による実験結果から,これらの手法がよりトポロジ的な一貫性とパーソナライズされたストーリーを生み出すことが示された。
論文 参考訳(メタデータ) (2020-10-20T00:36:15Z) - Narrative Interpolation for Generating and Understanding Stories [52.463747140762145]
そこで本研究では,ユーザが特定した目的語を含むコヒーレントな物語を生成するために,モデルをガイドできる物語・物語生成制御手法を提案する。
本手法の中核はGPT-2に基づく漸進的モデルであり,前文と次文を物語の中で条件付けし,そのギャップを埋める。
終末誘導世代は、与えられた終末ガイドに忠実で忠実であり、過去のアプローチよりも手作業の少ない物語を生み出すことを示す。
論文 参考訳(メタデータ) (2020-08-17T16:45:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。