論文の概要: Backpropagation through Soft Body: Investigating Information Processing in Brain-Body Coupling Systems
- arxiv url: http://arxiv.org/abs/2503.05601v1
- Date: Thu, 23 Jan 2025 21:05:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-16 11:45:15.886498
- Title: Backpropagation through Soft Body: Investigating Information Processing in Brain-Body Coupling Systems
- Title(参考訳): ソフトボディによるバックプロパゲーション:脳-体結合系における情報処理の研究
- Authors: Hiroki Tomioka, Katsuma Inoue, Yasuo Kuniyoshi, Kohei Nakajima,
- Abstract要約: 動物は脳、体、環境の動的結合を通じて洗練された行動制御を行う。
それぞれのコンポーネントを個別に設計することなく、洗練されたエージェントを生成するための共設計アプローチが提案されている。
物理的貯水池計算技術を用いて、最適化された脳機能を身体に組み込むことができることを示す。
- 参考スコア(独自算出の注目度): 2.0686733932673604
- License:
- Abstract: Animals achieve sophisticated behavioral control through dynamic coupling of the brain, body, and environment. Accordingly, the co-design approach, in which both the controllers and the physical properties are optimized simultaneously, has been suggested for generating refined agents without designing each component separately. In this study, we aim to reveal how the function of the information processing is distributed between brains and bodies while applying the co-design approach. Using a framework called ``backpropagation through soft body," we developed agents to perform specified tasks and analyzed their mechanisms. The tasks included classification and corresponding behavioral association, nonlinear dynamical system emulation, and autonomous behavioral generation. In each case, our analyses revealed reciprocal relationships between the brains and bodies. In addition, we show that optimized brain functionalities can be embedded into bodies using physical reservoir computing techniques. Our results pave the way for efficient designs of brain--body coupling systems.
- Abstract(参考訳): 動物は脳、体、環境の動的結合を通じて洗練された行動制御を行う。
したがって、制御器と物理特性を同時に最適化する共設計手法は、各部品を個別に設計することなく洗練されたエージェントを生成するために提案されている。
本研究では,脳と身体の間に情報処理の機能がどのように分散しているかを明らかにすることを目的として,共同設計手法を適用した。
ソフトボディによるバックプロパゲーション(backproagation through soft body)というフレームワークを用いて,特定のタスクを実行するエージェントを開発し,そのメカニズムを解析した。
タスクには、分類と対応する行動関連、非線形力学系エミュレーション、自律的な行動生成が含まれていた。
いずれの場合も,脳と身体の相互関係が明らかとなった。
さらに, 物理貯水池計算技術を用いて, 脳の機能最適化を身体に組み込むことができることを示した。
この結果は,脳-体結合系の効率的な設計の道を開くものである。
関連論文リスト
- BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
本稿では,脳ネットワークにおける複数の活性化経路を学習するための新しいフレームワークであるBrainMAPを紹介する。
本フレームワークは,タスクに関わる重要な脳領域の説明的分析を可能にする。
論文 参考訳(メタデータ) (2024-12-23T09:13:35Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - A Differentiable Approach to Multi-scale Brain Modeling [3.5874544981360987]
本稿では,脳シミュレータBrainPyを用いたマルチスケール微分脳モデリングワークフローを提案する。
単一ニューロンレベルでは、微分可能なニューロンモデルを実装し、電気生理学的データへの適合を最適化するために勾配法を用いる。
ネットワークレベルでは、生物学的に制約されたネットワークモデルを構築するためにコネクトロミックデータを組み込む。
論文 参考訳(メタデータ) (2024-06-28T07:41:31Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Neuromechanical Autoencoders: Learning to Couple Elastic and Neural
Network Nonlinearity [15.47367187516723]
私たちは機械学習のアナログを開発しようとしています。
メカニカルインテリジェンス
複素非線形弾性体のモルフォロジーとaを共に学習する。
ディープ・ニューラル・ネットワークで制御できます
論文 参考訳(メタデータ) (2023-01-31T19:04:28Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Meta-brain Models: biologically-inspired cognitive agents [0.0]
メタ脳モデルと呼ぶ計算手法を提案する。
特殊なモデルを用いて構成したレイヤの組み合わせを提案する。
我々は、この柔軟でオープンソースなアプローチの開発における次のステップを提案して、結論付けます。
論文 参考訳(メタデータ) (2021-08-31T05:20:53Z) - The whole brain architecture approach: Accelerating the development of
artificial general intelligence by referring to the brain [1.637145148171519]
個人が脳全体に対応するソフトウェアプログラムを設計することは困難である。
全脳アーキテクチャアプローチは、脳に触発されたAGI開発プロセスを脳の参照アーキテクチャを設計するタスクに分割する。
本研究では,仮想成分図を作成するための仮説構築手法である構造拘束型界面分解(scid)法を提案する。
論文 参考訳(メタデータ) (2021-03-06T04:58:12Z) - Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning [0.0]
本稿では,自己組織マップとヘビアン様学習を用いた再突入理論に基づく脳刺激型ニューラルシステムを提案する。
システムトポロジがユーザによって固定されるのではなく,自己組織化によって学習されるような,いわゆるハードウェアの可塑性の獲得について述べる。
論文 参考訳(メタデータ) (2020-04-11T21:02:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。