論文の概要: Biomechanics-Guided Residual Approach to Generalizable Human Motion Generation and Estimation
- arxiv url: http://arxiv.org/abs/2503.06151v2
- Date: Tue, 15 Jul 2025 17:27:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 15:29:04.176273
- Title: Biomechanics-Guided Residual Approach to Generalizable Human Motion Generation and Estimation
- Title(参考訳): バイオメカニクスによる一般化可能な人体運動生成と推定への残留的アプローチ
- Authors: Zixi Kang, Xinghan Wang, Yadong Mu,
- Abstract要約: 3つの中心となるイノベーションを持つバイオメカニック・アウェア・フレームワークであるBioVAEを提案する。
複数のベンチマークにおいて,BioVAEが最先端の性能を達成することを示す。
- 参考スコア(独自算出の注目度): 21.750804738752105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human pose, action, and motion generation are critical for applications in digital humans, character animation, and humanoid robotics. However, many existing methods struggle to produce physically plausible movements that are consistent with biomechanical principles. Although recent autoregressive and diffusion models deliver impressive visual quality, they often neglect key biodynamic features and fail to ensure physically realistic motions. Reinforcement Learning (RL) approaches can address these shortcomings but are highly dependent on simulation environments, limiting their generalizability. To overcome these challenges, we propose BioVAE, a biomechanics-aware framework with three core innovations: (1) integration of muscle electromyography (EMG) signals and kinematic features with acceleration constraints to enable physically plausible motion without simulations; (2) seamless coupling with diffusion models for stable end-to-end training; and (3) biomechanical priors that promote strong generalization across diverse motion generation and estimation tasks. Extensive experiments demonstrate that BioVAE achieves state-of-the-art performance on multiple benchmarks, bridging the gap between data-driven motion synthesis and biomechanical authenticity while setting new standards for physically accurate motion generation and pose estimation.
- Abstract(参考訳): 人間のポーズ、アクション、モーションジェネレーションは、デジタル人間、キャラクターアニメーション、ヒューマノイドロボット工学の応用に不可欠である。
しかし、既存の多くの手法は、生体力学の原理と整合した物理的に妥当な運動を生み出すのに苦労している。
最近の自己回帰モデルと拡散モデルは目覚ましい視覚的品質をもたらすが、しばしば重要な生体力学的特徴を無視し、物理的に現実的な動きを確実にすることができない。
強化学習(RL)アプローチはこれらの欠点に対処できるが、シミュレーション環境に大きく依存し、一般化性を制限する。
これらの課題を克服するために,(1)筋電図(EMG)信号とキネマティック特徴の統合,(2)安定なエンドツーエンドトレーニングのための拡散モデルとのシームレスな結合,(3)多様なモーション生成と推定タスクをまたいだ強力な一般化を促進するバイオメカニカル先行性という,3つの中心的革新を生かしたバイオメカニカル・アウェア・フレームワークであるBioVAEを提案する。
大規模な実験により、BioVAEは複数のベンチマークで最先端のパフォーマンスを達成し、物理的に正確な動作生成とポーズ推定の新しい標準を設定しながら、データ駆動型モーション合成とバイオメカニカル認証のギャップを埋めることを示した。
関連論文リスト
- Towards Immersive Human-X Interaction: A Real-Time Framework for Physically Plausible Motion Synthesis [51.95817740348585]
Human-Xは、様々な実体をまたいだ没入的で物理的に妥当なヒューマンインタラクションを可能にするために設計された、新しいフレームワークである。
本手法は, 自己回帰型反応拡散プランナを用いて, リアルタイムに反応と反応を同時予測する。
我々のフレームワークは、人間とロボットのインタラクションのための仮想現実インターフェースを含む、現実世界のアプリケーションで検証されている。
論文 参考訳(メタデータ) (2025-08-04T06:35:48Z) - Half-Physics: Enabling Kinematic 3D Human Model with Physical Interactions [88.01918532202716]
SMPL-Xを周囲との動的物理的相互作用が可能な有形実体に埋め込む新しい手法を提案する。
本手法は,シーンやオブジェクトとの物理的に妥当な相互作用を確保しつつ,固有のSMPL-Xポーズの運動制御を維持する。
広範かつ複雑な訓練を必要とする強化学習法とは異なり、ハーフフィック法は学習自由であり、あらゆる身体形状や運動に一般化する。
論文 参考訳(メタデータ) (2025-07-31T17:58:33Z) - KinTwin: Imitation Learning with Torque and Muscle Driven Biomechanical Models Enables Precise Replication of Able-Bodied and Impaired Movement from Markerless Motion Capture [2.44755919161855]
高品質な運動分析は、運動科学とリハビリテーションに大きな恩恵をもたらす可能性がある。
臨床実習において,模擬学習を用いて高品質な運動分析を可能にする可能性を示す。
論文 参考訳(メタデータ) (2025-05-19T17:58:03Z) - GENMO: A GENeralist Model for Human MOtion [64.16188966024542]
本稿では,1つのフレームワークで動作推定と生成を橋渡しする汎用人体運動モデル GENMO を提案する。
我々の重要な洞察は、出力運動が観測された条件信号を正確に満たさなければならないような制約された動き生成として運動推定を再構成することである。
我々の新しいアーキテクチャは、可変長動きと混合マルチモーダル条件(テキスト、オーディオ、ビデオ)を異なる時間間隔で処理し、柔軟な制御を提供する。
論文 参考訳(メタデータ) (2025-05-02T17:59:55Z) - Reinforcement learning-based motion imitation for physiologically plausible musculoskeletal motor control [47.423243831156285]
筋運動制御の理解を深めるために,モデルフリー運動模倣フレームワーク(KINESIS)を提案する。
我々は,KINESISが1.9時間のモーションキャプチャデータに対して強い模倣性能を達成できることを実証した。
キネシスはヒトの筋活動とよく相関する筋活動パターンを生成する。
論文 参考訳(メタデータ) (2025-03-18T18:37:49Z) - Spatial-Temporal Graph Diffusion Policy with Kinematic Modeling for Bimanual Robotic Manipulation [88.83749146867665]
既存のアプローチは、遠く離れた次のベストなエンドエフェクタのポーズを予測するポリシーを学びます。
すると、運動に対する対応する関節回転角を逆運動学を用いて計算する。
本稿では,Kinematics 拡張空間テンポアル gRaph diffuser を提案する。
論文 参考訳(メタデータ) (2025-03-13T17:48:35Z) - Learning Speed-Adaptive Walking Agent Using Imitation Learning with Physics-Informed Simulation [0.0]
生体力学的に現実的な動作を維持しつつ、様々な歩行速度に適応できる骨格型ヒューマノイド剤を開発した。
このフレームワークは、オープンソースのバイオメカニクスデータから生体力学的に妥当な歩行運動を生産する合成データジェネレータと、エージェントの歩行ポリシーを訓練するために逆模倣学習を使用する訓練システムとを組み合わせる。
論文 参考訳(メタデータ) (2024-12-05T07:55:58Z) - I-CTRL: Imitation to Control Humanoid Robots Through Constrained Reinforcement Learning [8.97654258232601]
有界残留強化学習(I-CTRL)によるヒューマノイドロボットの制御フレームワークの開発
I-CTRLは5つのロボットにまたがるシンプルでユニークな報酬で、動きの模倣に優れています。
本フレームワークでは,大規模動作データセットを管理するための自動優先度スケジューラを導入している。
論文 参考訳(メタデータ) (2024-05-14T16:12:27Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
筋骨格系と学習可能なパラメトリックハンドモデルMANOを統合し,MS-MANOを作成する。
このモデルは骨格系を駆動する筋肉と腱の力学をエミュレートし、結果として生じるトルク軌跡に生理学的に現実的な制約を与える。
また,マルチ層パーセプトロンネットワークによる初期推定ポーズを改良する,ループ式ポーズ改善フレームワークBioPRを提案する。
論文 参考訳(メタデータ) (2024-04-16T02:18:18Z) - 3D Kinematics Estimation from Video with a Biomechanical Model and
Synthetic Training Data [4.130944152992895]
2つの入力ビューから3Dキネマティクスを直接出力するバイオメカニクス対応ネットワークを提案する。
実験により, 提案手法は, 合成データにのみ訓練されたものであり, 従来の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-02-20T17:33:40Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - DROP: Dynamics Responses from Human Motion Prior and Projective Dynamics [21.00283279991885]
DROPは、生成的mOtionと射影力学を用いた人間のダイナミクス応答をモデリングするための新しいフレームワークである。
様々な動作タスクや様々な物理的摂動にまたがってモデルを広範囲に評価し、応答のスケーラビリティと多様性を実証する。
論文 参考訳(メタデータ) (2023-09-24T20:25:59Z) - Priority-Centric Human Motion Generation in Discrete Latent Space [59.401128190423535]
テキスト・ツー・モーション生成のための優先中心運動離散拡散モデル(M2DM)を提案する。
M2DMは、コード崩壊に対処するために、グローバルな自己注意機構と正規化用語を組み込んでいる。
また、各動きトークンの重要度から決定される革新的なノイズスケジュールを用いた動き離散拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-08-28T10:40:16Z) - A Physics-Informed Low-Shot Learning For sEMG-Based Estimation of Muscle
Force and Joint Kinematics [4.878073267556235]
表面筋電図(sEMG)による筋力と関節キネマティクス推定はリアルタイム生体力学的解析に不可欠である。
ディープニューラルネットワーク(DNN)の最近の進歩は、完全に自動化され再現可能な方法で生体力学解析を改善する可能性を示している。
本稿では,筋力と関節キネマティクスのsEMGに基づく新しい物理インフォームドローショット学習法を提案する。
論文 参考訳(メタデータ) (2023-07-08T23:01:12Z) - Skeleton2Humanoid: Animating Simulated Characters for
Physically-plausible Motion In-betweening [59.88594294676711]
現代の深層学習に基づく運動合成アプローチは、合成された運動の物理的妥当性をほとんど考慮していない。
テスト時に物理指向の動作補正を行うシステムSkeleton2Humanoid'を提案する。
挑戦的なLaFAN1データセットの実験は、物理的妥当性と精度の両方の観点から、我々のシステムが先行手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2022-10-09T16:15:34Z) - Ultrafast viscosity measurement with ballistic optical tweezers [55.41644538483948]
非侵襲粘度測定は秒の積分時間を必要とする。
速度を最大20マイクロ秒まで改善した4つの命令を実演する。
光学式ツイーザにおける捕捉粒子の瞬時速度を用いてこれを実現する。
論文 参考訳(メタデータ) (2020-06-29T00:09:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。