When Selection Meets Intervention: Additional Complexities in Causal Discovery
- URL: http://arxiv.org/abs/2503.07302v1
- Date: Mon, 10 Mar 2025 13:22:38 GMT
- Title: When Selection Meets Intervention: Additional Complexities in Causal Discovery
- Authors: Haoyue Dai, Ignavier Ng, Jianle Sun, Zeyu Tang, Gongxu Luo, Xinshuai Dong, Peter Spirtes, Kun Zhang,
- Abstract summary: We address the common yet often-overlooked selection bias in interventional studies, where subjects are selectively enrolled into experiments.<n>We introduce a graphical model that explicitly accounts for both the observed world (where interventions are applied) and the counterfactual world (where selection occurs while interventions have not been applied)<n>We propose a provably sound algorithm to identify causal relations as well as selection mechanisms up to the equivalence class.
- Score: 16.629408366459575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the common yet often-overlooked selection bias in interventional studies, where subjects are selectively enrolled into experiments. For instance, participants in a drug trial are usually patients of the relevant disease; A/B tests on mobile applications target existing users only, and gene perturbation studies typically focus on specific cell types, such as cancer cells. Ignoring this bias leads to incorrect causal discovery results. Even when recognized, the existing paradigm for interventional causal discovery still fails to address it. This is because subtle differences in when and where interventions happen can lead to significantly different statistical patterns. We capture this dynamic by introducing a graphical model that explicitly accounts for both the observed world (where interventions are applied) and the counterfactual world (where selection occurs while interventions have not been applied). We characterize the Markov property of the model, and propose a provably sound algorithm to identify causal relations as well as selection mechanisms up to the equivalence class, from data with soft interventions and unknown targets. Through synthetic and real-world experiments, we demonstrate that our algorithm effectively identifies true causal relations despite the presence of selection bias.
Related papers
- Identifying perturbation targets through causal differential networks [23.568795598997376]
We propose a causality-inspired approach to identify variables responsible for changes to a biological system.<n>First, we infer noisy causal graphs from the observational and interventional data.<n>We then learn to map the differences between these graphs, along with additional statistical features, to sets of variables that were intervened upon.
arXiv Detail & Related papers (2024-10-04T12:48:21Z) - Detecting and Identifying Selection Structure in Sequential Data [53.24493902162797]
We argue that the selective inclusion of data points based on latent objectives is common in practical situations, such as music sequences.
We show that selection structure is identifiable without any parametric assumptions or interventional experiments.
We also propose a provably correct algorithm to detect and identify selection structures as well as other types of dependencies.
arXiv Detail & Related papers (2024-06-29T20:56:34Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discovery aims to find automated search methods for learning causal structures from observational data.
This thesis focuses on two questions in causal discovery: (i) providing an alternative definition of k-Triangle Faithfulness that (i) is weaker than strong faithfulness when applied to the Gaussian family of distributions, and (ii) under the assumption that the modified version of Strong Faithfulness holds.
arXiv Detail & Related papers (2023-08-15T01:23:42Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Active Bayesian Causal Inference [72.70593653185078]
We propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning.
ABCI jointly infers a posterior over causal models and queries of interest.
We show that our approach is more data-efficient than several baselines that only focus on learning the full causal graph.
arXiv Detail & Related papers (2022-06-04T22:38:57Z) - BaCaDI: Bayesian Causal Discovery with Unknown Interventions [118.93754590721173]
BaCaDI operates in the continuous space of latent probabilistic representations of both causal structures and interventions.
In experiments on synthetic causal discovery tasks and simulated gene-expression data, BaCaDI outperforms related methods in identifying causal structures and intervention targets.
arXiv Detail & Related papers (2022-06-03T16:25:48Z) - The interventional Bayesian Gaussian equivalent score for Bayesian
causal inference with unknown soft interventions [0.0]
In certain settings, such as genomics, we may have data from heterogeneous study conditions, with soft (partial) interventions only pertaining to a subset of the study variables.
We define the interventional BGe score for a mixture of observational and interventional data, where the targets and effects of intervention may be unknown.
arXiv Detail & Related papers (2022-05-05T12:32:08Z) - Differentiable Causal Discovery Under Latent Interventions [3.867363075280544]
Recent work has shown promising results in causal discovery by leveraging interventional data with gradient-based methods, even when the intervened variables are unknown.
We envision a scenario with an extensive dataset sampled from multiple intervention distributions and one observation distribution, but where we do not know which distribution originated each sample and how the intervention affected the system.
We propose a method based on neural networks and variational inference that addresses this scenario by framing it as learning a shared causal graph among an infinite mixture.
arXiv Detail & Related papers (2022-03-04T14:21:28Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
We introduce the Abstract Causal REasoning dataset for systematic evaluation of current vision systems in causal induction.
Motivated by the stream of research on causal discovery in Blicket experiments, we query a visual reasoning system with the following four types of questions in either an independent scenario or an interventional scenario.
We notice that pure neural models tend towards an associative strategy under their chance-level performance, whereas neuro-symbolic combinations struggle in backward-blocking reasoning.
arXiv Detail & Related papers (2021-03-26T02:42:38Z) - Active Invariant Causal Prediction: Experiment Selection through
Stability [4.56877715768796]
In this work we propose a new active learning (i.e. experiment selection) framework (A-ICP) based on Invariant Causal Prediction (ICP)
For general structural causal models, we characterize the effect of interventions on so-called stable sets.
We propose several intervention selection policies for A-ICP which quickly reveal the direct causes of a response variable in the causal graph.
Empirically, we analyze the performance of the proposed policies in both population and finite-regime experiments.
arXiv Detail & Related papers (2020-06-10T07:07:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.