論文の概要: On the Importance of Clearsky Model in Short-Term Solar Radiation Forecasting
- arxiv url: http://arxiv.org/abs/2503.07647v1
- Date: Thu, 06 Mar 2025 08:29:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:41:40.211650
- Title: On the Importance of Clearsky Model in Short-Term Solar Radiation Forecasting
- Title(参考訳): 短期日射予測におけるクリアスキーモデルの重要性について
- Authors: Cyril Voyant, Milan Despotovic, Gilles Notton, Yves-Marie Saint-Drenan, Mohammed Asloune, Luis Garcia-Gutierrez,
- Abstract要約: エクストリームラーニングマシン(ELM)モデルを用いたClearsky-Free予測手法を提案する。
ELMはGHI(Global Horizontal Irradiance)データから直接、日々の周期性と局所的な変動を学習する。
当社のアプローチは,雲のない条件下での照射を暗黙的に学習する非線形適応統計手法である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Clearsky models are widely used in solar energy for many applications such as quality control, resource assessment, satellite-base irradiance estimation and forecasting. However, their use in forecasting and nowcasting is associated with a number of challenges. Synchronization errors, reliance on the Clearsky index (ratio of the global horizontal irradiance to its cloud-free counterpart) and high sensitivity of the clearsky model to errors in aerosol optical depth at low solar elevation limit their added value in real-time applications. This paper explores the feasibility of short-term forecasting without relying on a clearsky model. We propose a Clearsky-Free forecasting approach using Extreme Learning Machine (ELM) models. ELM learns daily periodicity and local variability directly from raw Global Horizontal Irradiance (GHI) data. It eliminates the need for Clearsky normalization, simplifying the forecasting process and improving scalability. Our approach is a non-linear adaptative statistical method that implicitely learns the irradiance in cloud-free conditions removing the need for an clear-sky model and the related operational issues. Deterministic and probabilistic results are compared to traditional benchmarks, including ARMA with McClear-generated Clearsky data and quantile regression for probabilistic forecasts. ELM matches or outperforms these methods, providing accurate predictions and robust uncertainty quantification. This approach offers a simple, efficient solution for real-time solar forecasting. By overcoming the stationarization process limitations based on usual multiplicative scheme Clearsky models, it provides a flexible and reliable framework for modern energy systems.
- Abstract(参考訳): クリアスキーモデルは、品質管理、資源評価、衛星ベースの照度推定、予測など多くの用途で太陽エネルギーで広く利用されている。
しかし、予測や放送における彼らの利用は多くの課題と関連している。
同期誤差、クリアスキー指数への依存(雲のない場合のグローバル水平照度比)、低太陽高度でのエアロゾル光深度誤差に対するクリアスキーモデルの高感度は、その付加価値をリアルタイムアプリケーションで制限する。
本稿では,明快なモデルに頼ることなく,短期予測の実現可能性について検討する。
エクストリームラーニングマシン(ELM)モデルを用いたClearsky-Free予測手法を提案する。
ELMはGHI(Global Horizontal Irradiance)データから直接、日々の周期性と局所的な変動を学習する。
これはClearskyの正規化の必要性を排除し、予測プロセスを簡素化し、スケーラビリティを向上させる。
当社のアプローチは,無雲条件下での照度を暗黙的に学習する非線形適応型統計手法である。
決定論的および確率論的結果は、マクレアーが生成したクリアスキーデータを用いたARMAや確率的予測のための量子回帰を含む従来のベンチマークと比較される。
ELMはこれらの手法に適合し、精度の高い予測と堅牢な不確実性定量化を提供する。
このアプローチは、リアルタイムな太陽予測のための単純で効率的なソリューションを提供する。
通常の乗法スキームClearskyモデルに基づく固定化プロセスの制限を克服することで、現代のエネルギーシステムのための柔軟で信頼性の高いフレームワークを提供する。
関連論文リスト
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
太陽発電は二酸化炭素の排出量を大幅に削減することで気候変動を緩和する大きな可能性を秘めている。
しかし、太陽光の固有の変動は、電力網に太陽エネルギーをシームレスに統合する上で大きな課題となる。
本稿では,衛星データを用いた時間的文脈の活用を目的としたディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-01T19:54:39Z) - A Machine Learning Outlook: Post-processing of Global Medium-range
Forecasts [0.0]
後処理は通常、数値気象予測(NWP)モデルの出力を受け取り、線形統計手法を適用する。
本研究では, 温度850hPaで7日間の予測において, 最大12%(RMSE)の精度向上を達成できることを示す。
我々は、ルート平均二乗誤差 (RMSE) や異常相関係数 (ACC) といった標準メトリクスを使用する際の課題について議論する。
論文 参考訳(メタデータ) (2023-03-28T20:48:01Z) - Diffusion Models for High-Resolution Solar Forecasts [0.0]
スコアベース拡散モデルは、多くの依存変数上の確率分布をモデル化するための新しいアプローチを提供する。
本手法は,超解速気象予測のための拡散モデルから多くの試料を発生させることにより,日頭太陽照度予測に適用する。
論文 参考訳(メタデータ) (2023-02-01T01:32:25Z) - Benchmarking of Deep Learning Irradiance Forecasting Models from Sky
Images -- an in-depth Analysis [0.0]
我々は4つのよく使われるディープラーニングアーキテクチャを訓練し、半球空画像のシーケンスから太陽の照度を予測する。
その結果、時間的側面の符号化は予測を大幅に改善し、10分予測スキルはテスト年度で20.4%に達した。
一般的なセットアップでは、ディープラーニングモデルは"非常にスマートな永続化モデル"のように振る舞う傾向があり、永続モデルと時間的に一致し、最もペナルティの高いエラーを軽減します。
論文 参考訳(メタデータ) (2021-02-01T09:31:14Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。