論文の概要: Computational bottlenecks for denoising diffusions
- arxiv url: http://arxiv.org/abs/2503.08028v2
- Date: Fri, 06 Jun 2025 00:31:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:42.891839
- Title: Computational bottlenecks for denoising diffusions
- Title(参考訳): 微分拡散の計算的ボトルネック
- Authors: Andrea Montanari, Viet Vu,
- Abstract要約: 最適値に非常に近いドリフトが存在するのに対して,ターゲット値から非常に遠い分布を持つ試料が得られた。
サンプリングが容易な確率分布を$mu$で研究することで、逆の証拠を与えるが、拡散過程のドリフトは難解である。
- 参考スコア(独自算出の注目度): 8.05574597775852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Denoising diffusions sample from a probability distribution $\mu$ in $\mathbb{R}^d$ by constructing a stochastic process $({\hat{\boldsymbol x}}_t:t\ge 0)$ in $\mathbb{R}^d$ such that ${\hat{\boldsymbol x}}_0$ is easy to sample, but the distribution of $\hat{\boldsymbol x}_T$ at large $T$ approximates $\mu$. The drift ${\boldsymbol m}:\mathbb{R}^d\times\mathbb{R}\to\mathbb{R}^d$ of this diffusion process is learned my minimizing a score-matching objective. Is every probability distribution $\mu$, for which sampling is tractable, also amenable to sampling via diffusions? We provide evidence to the contrary by studying a probability distribution $\mu$ for which sampling is easy, but the drift of the diffusion process is intractable -- under a popular conjecture on information-computation gaps in statistical estimation. We show that there exist drifts that are superpolynomially close to the optimum value (among polynomial time drifts) and yet yield samples with distribution that is very far from the target one.
- Abstract(参考訳): 確率分布 $\mu$ in $\mathbb{R}^d$ を確率過程 $({\hat{\boldsymbol x}}_t:t\ge 0)$ in $\mathbb{R}^d$ とすると、${\hat{\boldsymbol x}}_0$ はサンプリングが容易であるが、大きな$T$ における $\hat{\boldsymbol x}_T$ の分布は $\mu$ を近似する。
この拡散過程のドリフト${\boldsymbol m}:\mathbb{R}^d\times\mathbb{R}\to\mathbb{R}^d$は、スコアマッチングの目的を最小化する。
すべての確率分布は$\mu$で、サンプリングはトラクタブルであり、拡散によるサンプリングも可能か?
統計的推定における情報計算のギャップに関する一般的な予想の下で、サンプリングが容易であるが拡散過程のドリフトは難解である確率分布を$\mu$で研究することで、逆の証拠を提供する。
最適値(多項式時間ドリフト)に超多項式的に近いドリフトが存在するが、ターゲット値から非常に遠い分布を持つサンプルが得られることを示す。
関連論文リスト
- Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination [35.67742880001828]
平均シフト汚染を用いた高次元ロバスト平均推定のための計算効率のよい最初のアルゴリズムを提案する。
提案アルゴリズムは, ほぼ最適サンプルの複雑性を持ち, サンプル・ポリノミカル時間で動作し, ターゲット平均を任意の精度で近似する。
論文 参考訳(メタデータ) (2025-02-20T17:53:13Z) - Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models [65.71506381302815]
本稿では、$p(mathbfxmidmathbfy) propto p_theta(mathbfx)$ という形式の後続分布からサンプリングするコストを償却する。
多くのモデルと関心の制約に対して、ノイズ空間の後方はデータ空間の後方よりも滑らかであり、そのような償却推論に対してより快適である。
論文 参考訳(メタデータ) (2025-02-10T19:49:54Z) - A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion Models [45.60426164657739]
拡散型サンプリング器の非漸近収束理論を開発する。
我々は、$d/varepsilon$がターゲット分布を$varepsilon$トータル偏差距離に近似するのに十分であることを証明した。
我々の結果は、$ell$のスコア推定誤差がデータ生成プロセスの品質にどのように影響するかも特徴付ける。
論文 参考訳(メタデータ) (2024-08-05T09:02:24Z) - Minimax Optimality of Score-based Diffusion Models: Beyond the Density Lower Bound Assumptions [11.222970035173372]
カーネルベースのスコア推定器は$widetildeOleft(n-1 t-fracd+22(tfracd2 vee 1)rightの最適平均二乗誤差を達成する
核を用いたスコア推定器は,拡散モデルで生成した試料の分布の総変動誤差に対して,極小ガウスの下での最大平均2乗誤差を$widetildeOleft(n-1/2 t-fracd4right)$上界で達成することを示す。
論文 参考訳(メタデータ) (2024-02-23T20:51:31Z) - Replicable Clustering [57.19013971737493]
我々は,統計学的な$k$-medians,統計学的な$k$-means,統計学的な$k$-centers問題のアルゴリズムをブラックボックス方式で近似ルーチンを用いて提案する。
理論的結果を検証するブラックボックスとしてsklearnの$k$-means++実装を用いた2次元合成分布の実験も行っている。
論文 参考訳(メタデータ) (2023-02-20T23:29:43Z) - Stochastic Approximation Approaches to Group Distributionally Robust Optimization and Beyond [89.72693227960274]
本稿では,グループ分散ロバスト最適化 (GDRO) を,$m$以上の異なる分布をうまく処理するモデルを学習する目的で検討する。
各ラウンドのサンプル数を$m$から1に抑えるため、GDROを2人でプレイするゲームとして、一方のプレイヤーが実行し、他方のプレイヤーが非公開のマルチアームバンディットのオンラインアルゴリズムを実行する。
第2のシナリオでは、最大リスクではなく、平均的最上位k$リスクを最適化し、分散の影響を軽減することを提案する。
論文 参考訳(メタデータ) (2023-02-18T09:24:15Z) - Approximate Function Evaluation via Multi-Armed Bandits [51.146684847667125]
既知の滑らかな関数 $f$ の値を未知の点 $boldsymbolmu in mathbbRn$ で推定する問題について検討する。
我々は、各座標の重要性に応じてサンプルを学習するインスタンス適応アルゴリズムを設計し、少なくとも1-delta$の確率で$epsilon$の正確な推定値である$f(boldsymbolmu)$を返す。
論文 参考訳(メタデータ) (2022-03-18T18:50:52Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
低忠実度状態におけるノイズランダム量子回路の測定結果の分布について検討する。
十分に弱くユニタリな局所雑音に対して、一般的なノイズ回路インスタンスの出力分布$p_textnoisy$間の相関(線形クロスエントロピーベンチマークで測定)は指数関数的に減少する。
ノイズが不整合であれば、出力分布は、正確に同じ速度で均一分布の$p_textunif$に近づく。
論文 参考訳(メタデータ) (2021-11-29T19:26:28Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
我々は、$bf K$ の固有スペクトルが$bf w$ の i.d. 成分の分布とは独立であることを示す。
3次ランダム特徴(TRF)と呼ばれる新しいランダム手法を提案する。
提案したランダムな特徴の計算には乗算が不要であり、古典的なランダムな特徴に比べてストレージに$b$のコストがかかる。
論文 参考訳(メタデータ) (2021-10-05T09:33:49Z) - An MCMC Method to Sample from Lattice Distributions [4.4044968357361745]
我々はMarkov Chain Monte Carloアルゴリズムを導入し、$d$-dimensional lattice $Lambdaでサポートされている確率分布からサンプルを生成する。
提案する分布として$pi$を使用し、適切な目標分布に対するメトロポリス・ハスティングの受け入れ比率を算出する。
論文 参考訳(メタデータ) (2021-01-16T15:01:53Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
非同期Q-ラーニングはマルコフ決定過程(MDP)の最適行動値関数(またはQ-関数)を学習することを目的としている。
Q-関数の入出力$varepsilon$-正確な推定に必要なサンプルの数は、少なくとも$frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$の順である。
論文 参考訳(メタデータ) (2020-06-04T17:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。