論文の概要: An Analysis of Safety Guarantees in Multi-Task Bayesian Optimization
- arxiv url: http://arxiv.org/abs/2503.08555v1
- Date: Tue, 11 Mar 2025 15:45:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:41:33.960244
- Title: An Analysis of Safety Guarantees in Multi-Task Bayesian Optimization
- Title(参考訳): マルチタスクベイズ最適化における安全保証の分析
- Authors: Jannis O. Luebsen, Annika Eichler,
- Abstract要約: 本稿では,高確率安全性を維持しつつ,複数のタスクを統合する安全なマルチタスクベイズ最適化アルゴリズムを提案する。
提案手法は,コスト対評価関数に適しており,サンプル効率は大幅に向上した。
- 参考スコア(独自算出の注目度): 1.534667887016089
- License:
- Abstract: In many practical scenarios of black box optimization, the objective function is subject to constraints that must be satisfied to avoid undesirable outcomes. Such constraints are typically unknown and must be learned during optimization. Safe Bayesian optimization aims to find the global optimum while ensuring that the constraints are satisfied with high probability. However, it is often sample-inefficient due to the small initial feasible set, which requires expansion by evaluating the objective or constraint functions, limiting its applicability to low-dimensional or inexpensive problems. To enhance sample efficiency, additional information from cheap simulations can be leveraged, albeit at the cost of safeness guarantees. This paper introduces a novel safe multi-task Bayesian optimization algorithm that integrates multiple tasks while maintaining high-probability safety. We derive robust uniform error bounds for the multi-task case and demonstrate the effectiveness of the approach on benchmark functions and a control problem. Our results show a significant improvement in sample efficiency, making the proposed method well-suited for expensive-to-evaluate functions.
- Abstract(参考訳): ブラックボックス最適化の多くの実践シナリオでは、目的関数は望ましくない結果を避けるために満たさなければならない制約に従わなければならない。
このような制約は典型的には未知であり、最適化の過程で学ばなければならない。
安全なベイズ最適化は、制約が高い確率で満たされることを確実にしながら、グローバルな最適化を見つけることを目的としている。
しかし、これは小さな初期実現可能集合のため、しばしばサンプル非効率であり、それは目的関数や制約関数を評価して拡張を必要とし、低次元または安価な問題にその適用範囲を限定する。
サンプル効率を向上させるため、安否保証のコストがかかるにもかかわらず、安価なシミュレーションから追加情報を利用することができる。
本稿では,高確率安全性を維持しつつ,複数のタスクを統合する安全なマルチタスクベイズ最適化アルゴリズムを提案する。
マルチタスクの場合のロバストな均一なエラー境界を導出し、ベンチマーク関数に対するアプローチの有効性と制御問題を示す。
提案手法は,コスト対評価関数に適しており,サンプル効率は大幅に向上した。
関連論文リスト
- A Novel Unified Parametric Assumption for Nonconvex Optimization [53.943470475510196]
非最適化は機械学習の中心であるが、一般の非凸性は弱い収束を保証するため、他方に比べて悲観的すぎる。
非凸アルゴリズムに新しい統一仮定を導入する。
論文 参考訳(メタデータ) (2025-02-17T21:25:31Z) - Information-Theoretic Safe Bayesian Optimization [59.758009422067005]
そこでは、未知の(安全でない)制約に反するパラメータを評価することなく、未知の関数を最適化することを目的としている。
現在のほとんどのメソッドはドメインの離散化に依存しており、連続ケースに直接拡張することはできない。
本稿では,GP後部を直接利用して,最も情報に富む安全なパラメータを識別する情報理論的安全な探索基準を提案する。
論文 参考訳(メタデータ) (2024-02-23T14:31:10Z) - Towards Safe Multi-Task Bayesian Optimization [1.3654846342364308]
システムの物理モデルを減らすことは最適化プロセスに組み込むことができ、それを加速することができる。
これらのモデルは実際のシステムの近似を提供することができ、それらの評価は極めて安価である。
安全はベイズ最適化のようなオンライン最適化手法にとって重要な基準である。
論文 参考訳(メタデータ) (2023-12-12T13:59:26Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
本稿では、等価な制約のない問題の単一最小化により、煩雑な制約付きポリシー反復を解決するP3Oを提案する。
P3Oは、コスト制約を排除し、クリップされたサロゲート目的による信頼領域制約を除去するために、単純なyet効果のペナルティ関数を利用する。
P3Oは,一連の制約された機関車作業において,報酬改善と制約満足度の両方に関して,最先端のアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-05-24T06:15:51Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
高価な関数評価を用いたマルチオブジェクト(MO)ブラックボックス最適化の問題点を考察する。
UeMOと呼ばれる新しい不確実性対応検索フレームワークを提案し、評価のための入力シーケンスを効率的に選択する。
論文 参考訳(メタデータ) (2022-04-12T16:50:48Z) - Efficient Neural Network Analysis with Sum-of-Infeasibilities [64.31536828511021]
凸最適化における総和係数法に着想を得て,広範な分岐関数を持つネットワーク上での検証クエリを解析するための新しい手法を提案する。
標準ケース分析に基づく完全探索手順の拡張は、各検索状態で実行される凸手順をDeepSoIに置き換えることによって達成できる。
論文 参考訳(メタデータ) (2022-03-19T15:05:09Z) - A Robust Multi-Objective Bayesian Optimization Framework Considering
Input Uncertainty [0.0]
エンジニアリング設計のような現実的なアプリケーションでは、設計者は複数の目的と入力の不確実性を考慮に入れたい場合が多い。
入力の不確実性を考慮した多目的最適化を効率的に行うための新しいベイズ最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-25T17:45:26Z) - Uncertainty aware Search Framework for Multi-Objective Bayesian
Optimization with Constraints [44.25245545568633]
高価な関数評価を用いた制約付きマルチオブジェクト(MO)ブラックボックス最適化の問題点を考察する。
本稿では,制約付き多目的最適化のための不確実性認識検索フレームワークを提案する。
UeMOCは最適化回路の探索に必要なシミュレーション数を90%以上削減できることを示す。
論文 参考訳(メタデータ) (2020-08-16T23:34:09Z) - Composition of kernel and acquisition functions for High Dimensional
Bayesian Optimization [0.1749935196721634]
目的関数の追加性を用いて、ベイズ最適化のカーネルと取得関数の両方をマッピングする。
このap-proachは確率的代理モデルの学習/更新をより効率的にする。
都市給水システムにおけるポンプの制御を実運用に適用するための結果が提示された。
論文 参考訳(メタデータ) (2020-03-09T15:45:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。