Large Neighborhood Search and Bitmask Dynamic Programming for Wireless Mobile Charging Electric Vehicle Routing Problems in Medical Transportation
- URL: http://arxiv.org/abs/2503.08752v1
- Date: Tue, 11 Mar 2025 14:11:10 GMT
- Title: Large Neighborhood Search and Bitmask Dynamic Programming for Wireless Mobile Charging Electric Vehicle Routing Problems in Medical Transportation
- Authors: Jingyi Zhao, Haoxiang Yang, Yang Liu,
- Abstract summary: We propose the Wireless Mobile Charging Electric Vehicle Problem (WMC-EVRP)<n>This problem enables Medical Transportation Electric Vehicles (MTEVs) to be charged while traveling via Mobile Charging Carts (MCTs)<n>We develop a mathematical model and a tailored meta-heuristic algorithm that combines Bit Mask Dynamic Programming (BDP) and Large Neighborhood Search (LNS)
- Score: 5.740535941960799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The transition to electric vehicles (EVs) is critical to achieving sustainable transportation, but challenges such as limited driving range and insufficient charging infrastructure have hindered the widespread adoption of EVs, especially in time-sensitive logistics such as medical transportation. This paper presents a new model to break through this barrier by combining wireless mobile charging technology with optimization. We propose the Wireless Mobile Charging Electric Vehicle Routing Problem (WMC-EVRP), which enables Medical Transportation Electric Vehicles (MTEVs) to be charged while traveling via Mobile Charging Carts (MCTs). This eliminates the time wastage of stopping for charging and ensures uninterrupted operation of MTEVs for such time-sensitive transportation problems. However, in this problem, the decisions of these two types of heterogeneous vehicles are coupled with each other, which greatly increases the difficulty of vehicle routing optimizations. To address this complex problem, we develop a mathematical model and a tailored meta-heuristic algorithm that combines Bit Mask Dynamic Programming (BDP) and Large Neighborhood Search (LNS). The BDP approach efficiently optimizes charging strategies, while the LNS framework utilizes custom operators to optimize the MTEV routes under capacity and synchronization constraints. Our approach outperforms traditional solvers in providing solutions for medium and large instances. Using actual hospital locations in Singapore as data, we validated the practical applicability of the model through extensive experiments and provided important insights into minimizing costs and ensuring the timely delivery of healthcare services.
Related papers
- Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.<n>In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.<n>The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - Fair collaborative vehicle routing: A deep multi-agent reinforcement
learning approach [49.00137468773683]
Collaborative vehicle routing occurs when carriers collaborate through sharing their transportation requests and performing transportation requests on behalf of each other.
Traditional game theoretic solution concepts are expensive to calculate as the characteristic function scales exponentially with the number of agents.
We propose to model this problem as a coalitional bargaining game solved using deep multi-agent reinforcement learning.
arXiv Detail & Related papers (2023-10-26T15:42:29Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
"Smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation.
We investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations.
We propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging.
arXiv Detail & Related papers (2023-10-18T18:38:59Z) - Deep Reinforcement Learning Based Framework for Mobile Energy
Disseminator Dispatching to Charge On-the-Road Electric Vehicles [3.7313553276292657]
This paper proposes a deep reinforcement learning based methodology to develop a vehicle dispatching framework.
The proposed model can significantly enhance EV travel range while efficiently deploying a optimal number of MEDs.
arXiv Detail & Related papers (2023-08-29T22:23:52Z) - Federated Reinforcement Learning for Electric Vehicles Charging Control
on Distribution Networks [42.04263644600909]
Multi-agent deep reinforcement learning (MADRL) has proven its effectiveness in EV charging control.
Existing MADRL-based approaches fail to consider the natural power flow of EV charging/discharging in the distribution network.
This paper proposes a novel approach that combines multi-EV charging/discharging with a radial distribution network (RDN) operating under optimal power flow.
arXiv Detail & Related papers (2023-08-17T05:34:46Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
This paper develops an optimal EV charging/discharging control strategy for different EV users under dynamic environments.
A horizontal federated reinforcement learning (HFRL)-based method is proposed to fit various users' behaviors and dynamic environments.
Simulation results illustrate that the proposed real-time EV charging/discharging control strategy can perform well among various factors.
arXiv Detail & Related papers (2022-10-04T08:22:46Z) - A Multi-Objective approach to the Electric Vehicle Routing Problem [0.0]
The electric vehicle routing problem (EVRP) has garnered great interest from researchers and industrialists in an attempt to move from fuel-based vehicles to healthier and more efficient electric vehicles (EVs)
Previous works target logistics and delivery-related solutions wherein a homogeneous fleet of commercial EVs have to return to the initial point after making multiple stops.
We perform multi-objective optimization - minimizing the total trip time and the cumulative cost of charging.
arXiv Detail & Related papers (2022-08-26T05:09:59Z) - A new Hyper-heuristic based on Adaptive Simulated Annealing and
Reinforcement Learning for the Capacitated Electric Vehicle Routing Problem [9.655068751758952]
Electric vehicles (EVs) have been adopted in urban areas to reduce environmental pollution and global warming.
There are still deficiencies in routing the trajectories of last-mile logistics that continue to impact social and economic sustainability.
This paper proposes a hyper-heuristic approach called Hyper-heuristic Adaptive Simulated Annealing with Reinforcement Learning.
arXiv Detail & Related papers (2022-06-07T11:10:38Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - An SMT Based Compositional Model to Solve a Conflict-Free Electric
Vehicle Routing Problem [2.64699517152535]
The Electric Conflict-Free Vehicle Routing Problem (CF-EVRP) involves constraints such as limited operating range of the vehicles, time windows on the delivery to the customers, and limited capacity on the number of vehicles the road segments can accommodate.
We develop a compositional model that breaks down the problem into smaller and simpler sub-problems and provides sub-optimal, feasible solutions.
arXiv Detail & Related papers (2021-06-10T20:37:46Z) - Dynamic Bicycle Dispatching of Dockless Public Bicycle-sharing Systems
using Multi-objective Reinforcement Learning [79.61517670541863]
How to use AI to provide efficient bicycle dispatching solutions based on dynamic bicycle rental demand is an essential issue for dockless PBS (DL-PBS)
We propose a dynamic bicycle dispatching algorithm based on multi-objective reinforcement learning (MORL-BD) to provide the optimal bicycle dispatching solution for DL-PBS.
arXiv Detail & Related papers (2021-01-19T03:09:51Z) - Efficient algorithms for electric vehicles' min-max routing problem [4.640835690336652]
An increase in greenhouse gases emission from the transportation sector has led companies and the government to elevate and support the production of electric vehicles (EV)
With recent developments in urbanization and e-commerce, transportation companies are replacing their conventional fleet with EVs to strengthen the efforts for sustainable and environment-friendly operations.
deploying a fleet of EVs asks for efficient routing and recharging strategies to alleviate their limited range and mitigate the battery degradation rate.
arXiv Detail & Related papers (2020-08-07T18:45:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.