論文の概要: SASNet: Spatially-Adaptive Sinusoidal Neural Networks
- arxiv url: http://arxiv.org/abs/2503.09750v1
- Date: Wed, 12 Mar 2025 18:49:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:53:19.279263
- Title: SASNet: Spatially-Adaptive Sinusoidal Neural Networks
- Title(参考訳): SASNet:空間適応型正弦波ニューラルネットワーク
- Authors: Haoan Feng, Diana Aldana, Tiago Novello, Leila De Floriani,
- Abstract要約: 正弦波ニューラルネットワーク(SNN)は、コンピュータビジョンやグラフィックスにおける低次元信号のための強力な暗黙的ニューラルネットワーク(INR)として登場した。
本研究では,空間適応型SNNであるSASNetを提案する。
実験の結果, SASNetは最先端INRより優れ, 高い適合精度, 超高分解能, ノイズ抑制を実現していることがわかった。
- 参考スコア(独自算出の注目度): 4.933745865859056
- License:
- Abstract: Sinusoidal neural networks (SNNs) have emerged as powerful implicit neural representations (INRs) for low-dimensional signals in computer vision and graphics. They enable high-frequency signal reconstruction and smooth manifold modeling; however, they often suffer from spectral bias, training instability, and overfitting. To address these challenges, we propose SASNet, Spatially-Adaptive SNNs that robustly enhance the capacity of compact INRs to fit detailed signals. SASNet integrates a frequency embedding layer to control frequency components and mitigate spectral bias, along with jointly optimized, spatially-adaptive masks that localize neuron influence, reducing network redundancy and improving convergence stability. Robust to hyperparameter selection, SASNet faithfully reconstructs high-frequency signals without overfitting low-frequency regions. Our experiments show that SASNet outperforms state-of-the-art INRs, achieving strong fitting accuracy, super-resolution capability, and noise suppression, without sacrificing model compactness.
- Abstract(参考訳): 正弦波ニューラルネットワーク(SNN)は、コンピュータビジョンやグラフィックスにおける低次元信号のための強力な暗黙的ニューラルネットワーク(INR)として登場した。
高周波信号再構成と滑らかな多様体モデリングを可能にするが、しばしばスペクトルバイアス、トレーニング不安定性、過度な適合に悩まされる。
これらの課題に対処するため、我々はSASNet、空間適応型SNNを提案し、詳細な信号に適合するコンパクトINRの容量を強力に向上する。
SASNetは周波数の埋め込み層を統合し、周波数成分を制御し、スペクトルバイアスを軽減するとともに、ニューロンの影響を局所化し、ネットワークの冗長性を低減し、収束安定性を向上する共同最適化された空間適応マスクを備える。
SASNetは、ハイパーパラメータ選択に頑健なため、低周波数領域を過度に適合させることなく、高周波信号を忠実に再構成する。
実験により, SASNetは, モデルコンパクト性を犠牲にすることなく, 高い適合精度, 超高分解能, ノイズ抑制を実現し, 最先端INRよりも優れた性能を示した。
関連論文リスト
- STAF: Sinusoidal Trainable Activation Functions for Implicit Neural Representation [7.2888019138115245]
Inlicit Neural Representations (INR) は、連続的な信号をモデリングするための強力なフレームワークとして登場した。
ReLUベースのネットワークのスペクトルバイアスは、十分に確立された制限であり、ターゲット信号の微細な詳細を捕捉する能力を制限する。
Sinusoidal Trainable Function Activation (STAF)について紹介する。
STAFは本質的に周波数成分を変調し、自己適応型スペクトル学習を可能にする。
論文 参考訳(メタデータ) (2025-02-02T18:29:33Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - sVAD: A Robust, Low-Power, and Light-Weight Voice Activity Detection
with Spiking Neural Networks [51.516451451719654]
スパイキングニューラルネットワーク(SNN)は生物学的に妥当で、電力効率が高いことが知られている。
本稿では sVAD と呼ばれる新しい SNN ベースの音声活動検出モデルを提案する。
SincNetと1D畳み込みによる効果的な聴覚特徴表現を提供し、アテンション機構による雑音の堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-09T02:55:44Z) - SynA-ResNet: Spike-driven ResNet Achieved through OR Residual Connection [10.702093960098104]
スパイキングニューラルネットワーク(SNN)は、その生物学的忠実さとエネルギー効率のよいスパイク駆動操作を実行する能力のために、脳のような計算にかなりの注意を払っている。
ORRC(Residual Connection)を通じて大量の冗長情報を蓄積する新しいトレーニングパラダイムを提案する。
次に,SynA(SynA)モジュールを用いて冗長情報をフィルタリングし,背骨における特徴抽出を促進するとともに,ショートカットにおけるノイズや無駄な特徴の影響を抑える。
論文 参考訳(メタデータ) (2023-11-11T13:36:27Z) - Hyperspectral Image Denoising via Self-Modulating Convolutional Neural
Networks [15.700048595212051]
相関スペクトルと空間情報を利用した自己変調畳み込みニューラルネットワークを提案する。
モデルの中心には新しいブロックがあり、隣り合うスペクトルデータに基づいて、ネットワークが適応的に特徴を変換することができる。
合成データと実データの両方の実験解析により,提案したSM-CNNは,他の最先端HSI復調法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-09-15T06:57:43Z) - SSN: Stockwell Scattering Network for SAR Image Change Detection [15.016384404176398]
提案したSSNは、ノイズ耐性の特徴表現を提供し、SAR画像変化検出における最先端性能を得る。
3つの実SAR画像データセットの実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-04-22T13:35:34Z) - SiNeRF: Sinusoidal Neural Radiance Fields for Joint Pose Estimation and
Scene Reconstruction [147.9379707578091]
NeRFmmは、共同最適化タスクを扱うNeRF(Neural Radiance Fields)である。
NeRFmmは正確なシーン合成とポーズ推定を行うが、難しいシーンで完全に注釈付けされたベースラインを上回るのに苦戦している。
放射光マッピングにおける正弦波活性化を利用する正弦波ニューラルレイディアンス場(SiNeRF)と、効率よく光束を選択するための新しい混合領域サンプリング(MRS)を提案する。
論文 参考訳(メタデータ) (2022-10-10T10:47:51Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Dynamic Slimmable Denoising Network [64.77565006158895]
DDSNet(Dynamic Slimmable Denoising Network)は、計算量が少なくて優れたDenoising品質を実現するための一般的な手法である。
OurNetには動的ゲートによる動的推論の能力が備わっている。
我々の実験は、最先端の個別に訓練された静的 denoising ネットワークよりも一貫して優れています。
論文 参考訳(メタデータ) (2021-10-17T22:45:33Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。