論文の概要: Numerically robust Gaussian state estimation with singular observation noise
- arxiv url: http://arxiv.org/abs/2503.10279v1
- Date: Thu, 13 Mar 2025 11:43:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:50:38.822457
- Title: Numerically robust Gaussian state estimation with singular observation noise
- Title(参考訳): 特異観測雑音を用いた数値ロバストなガウス状態推定
- Authors: Nicholas Krämer, Filip Tronarp,
- Abstract要約: 本稿では特異な観測ノイズを伴うガウス状態推定のための数値的ロバストなアルゴリズムを提案する。
提案手法の計算保存と数値ロバスト性を解析し,本手法の有効性をシミュレーションで検証した。
- 参考スコア(独自算出の注目度): 10.487920339867953
- License:
- Abstract: This article proposes numerically robust algorithms for Gaussian state estimation with singular observation noise. Our approach combines a series of basis changes with Bayes' rule, transforming the singular estimation problem into a nonsingular one with reduced state dimension. In addition to ensuring low runtime and numerical stability, our proposal facilitates marginal-likelihood computations and Gauss-Markov representations of the posterior process. We analyse the proposed method's computational savings and numerical robustness and validate our findings in a series of simulations.
- Abstract(参考訳): 本稿では特異な観測ノイズを伴うガウス状態推定のための数値的ロバストなアルゴリズムを提案する。
このアプローチはベイズの法則と一連の基底変化を組み合わさり、特異推定問題を状態次元が減少する非特異な問題に変換する。
提案手法は,低ランタイムと数値安定性の確保に加えて,差分計算や後続過程のガウス・マルコフ表現を容易にする。
提案手法の計算保存と数値ロバスト性を解析し,本手法の有効性をシミュレーションで検証した。
関連論文リスト
- Eliminating Ratio Bias for Gradient-based Simulated Parameter Estimation [0.7673339435080445]
本稿では、可能性関数が解析的に利用できないモデルにおけるパラメータキャリブレーションの課題に対処する。
本稿では,最大推定と後続密度推定の両問題において,比バイアスの問題に対処するマルチタイムスケールを応用した勾配に基づくシミュレーションパラメータ推定フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-20T02:46:15Z) - Study of Robust Direction Finding Based on Joint Sparse Representation [2.3333781137726137]
スパース信号回復(SSR)に基づく新しいDOA推定法を提案する。
グリッドミスマッチの問題に対処するために、交互最適化アプローチを用いる。
シミュレーションの結果,提案手法は大きな外れ値に対してロバスト性を示すことがわかった。
論文 参考訳(メタデータ) (2024-05-27T02:26:37Z) - Efficient Incremental Belief Updates Using Weighted Virtual Observations [2.7195102129095003]
モンテカルロ推論の文脈における漸進的信念更新問題に対するアルゴリズム的解を提案する。
このアプローチの効率性と堅牢性を示すために,多くの実践例とケーススタディにソリューションを実装し,適用する。
論文 参考訳(メタデータ) (2024-02-10T12:48:49Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
誘導点に基づくスケーラブルスパース近似の数値安定性について検討する。
地理空間モデリングなどの低次元タスクに対しては,これらの条件を満たす点を自動計算する手法を提案する。
論文 参考訳(メタデータ) (2022-10-14T15:20:17Z) - Online Multi-Agent Decentralized Byzantine-robust Gradient Estimation [62.997667081978825]
本アルゴリズムは,同時摂動,セキュアな状態推定,2時間スケール近似に基づく。
また,数値実験によるアルゴリズムの性能も示す。
論文 参考訳(メタデータ) (2022-09-30T07:29:49Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Rigid and Articulated Point Registration with Expectation Conditional
Maximization [20.096170794358315]
革新的なEMライクアルゴリズム、すなわちECMPR(Conditional Expectation Maximization for Point Registration)アルゴリズムを紹介します。
登録パラメータの推定の観点で、関連する結果について詳細に分析する。
堅固な登録を有形登録まで延長します。
論文 参考訳(メタデータ) (2020-12-09T17:36:11Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
オンラインデータストリームによって生成される有限個の点からなるランダムな確率測度に対する人口推定バリセンタ問題を考察する。
本稿では,この問題の構造を用いて,凸凹型サドル点再構成を行う。
ランダム確率測度の分布が離散的な場合、最適化アルゴリズムを提案し、その複雑性を推定する。
論文 参考訳(メタデータ) (2020-06-11T19:40:38Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。