論文の概要: CODEI: Resource-Efficient Task-Driven Co-Design of Perception and Decision Making for Mobile Robots Applied to Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2503.10296v1
- Date: Thu, 13 Mar 2025 12:12:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:53:48.702519
- Title: CODEI: Resource-Efficient Task-Driven Co-Design of Perception and Decision Making for Mobile Robots Applied to Autonomous Vehicles
- Title(参考訳): CODEI: 自律走行車に適用された移動ロボットの知覚と意思決定の資源効率の良いタスク駆動協調設計
- Authors: Dejan Milojevic, Gioele Zardini, Miriam Elser, Andrea Censi, Emilio Frazzoli,
- Abstract要約: 本稿では,移動ロボットの設計における統合的課題と戦略に焦点を当てる。
意思決定における知覚と行動計画の相互作用を強調した。
本稿では,移動ロボットの共設計問題を解決するための枠組みを,共設計の共設計の略であるCODEIと呼ぶ。
- 参考スコア(独自算出の注目度): 7.480009220235756
- License:
- Abstract: This paper discusses the integration challenges and strategies for designing mobile robots, by focusing on the task-driven, optimal selection of hardware and software to balance safety, efficiency, and minimal usage of resources such as costs, energy, computational requirements, and weight. We emphasize the interplay between perception and motion planning in decision-making by introducing the concept of occupancy queries to quantify the perception requirements for sampling-based motion planners. Sensor and algorithm performance are evaluated using False Negative Rates (FPR) and False Positive Rates (FPR) across various factors such as geometric relationships, object properties, sensor resolution, and environmental conditions. By integrating perception requirements with perception performance, an Integer Linear Programming (ILP) approach is proposed for efficient sensor and algorithm selection and placement. This forms the basis for a co-design optimization that includes the robot body, motion planner, perception pipeline, and computing unit. We refer to this framework for solving the co-design problem of mobile robots as CODEI, short for Co-design of Embodied Intelligence. A case study on developing an Autonomous Vehicle (AV) for urban scenarios provides actionable information for designers, and shows that complex tasks escalate resource demands, with task performance affecting choices of the autonomy stack. The study demonstrates that resource prioritization influences sensor choice: cameras are preferred for cost-effective and lightweight designs, while lidar sensors are chosen for better energy and computational efficiency.
- Abstract(参考訳): 本稿では,コスト,エネルギ,計算要求,重量といった資源の安全性,効率,最小使用量のバランスをとるために,タスク駆動型,ハードウェアとソフトウェアの最適選択に焦点を当て,移動ロボットの設計における統合課題と戦略について論じる。
我々は,サンプリング型運動プランナの知覚要求を定量化するために,占有クエリの概念を導入することにより,意思決定における知覚と行動計画の相互作用を強調した。
センサとアルゴリズムの性能は, 幾何学的関係, オブジェクト特性, センサの分解能, 環境条件など, さまざまな要因にまたがってFPRおよびFPRを用いて評価される。
Integer Linear Programming(ILP)アプローチは,知覚要求と知覚性能を統合することで,効率的なセンサとアルゴリズムの選択と配置を実現する。
これは、ロボット本体、モーションプランナー、知覚パイプライン、コンピューティングユニットを含む、共同設計の最適化の基礎を形成する。
本稿では,移動ロボットの協調設計問題を解決するための枠組みを,共設計の共設計の略であるCODEIと呼ぶ。
都市シナリオのための自律走行車(AV)の開発に関するケーススタディは、デザイナに実行可能な情報を提供し、複雑なタスクがリソース需要をエスカレートし、タスクパフォーマンスが自律スタックの選択に影響を与えることを示す。
カメラは低コストで軽量な設計に好まれ、ライダーセンサーはエネルギーと計算効率を向上させるために選択される。
関連論文リスト
- Intelligent Sensing-to-Action for Robust Autonomy at the Edge: Opportunities and Challenges [19.390215975410406]
ロボット、スマートシティ、自動運転車における自律エッジコンピューティングは、センサー、処理、アクチュエーターのシームレスな統合に依存している。
中心となるのは、センサー入力と計算モデルとを反復的に整列させて適応制御戦略を駆動するセンサー・ツー・アクション・ループである。
本稿では、能動的、文脈対応型センシング・ツー・アクションとアクション・トゥ・センシングの適応によって効率が向上する方法について論じる。
論文 参考訳(メタデータ) (2025-02-04T20:13:58Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - Transforming the Hybrid Cloud for Emerging AI Workloads [81.15269563290326]
このホワイトペーパーでは、AIワークロードの複雑さの増大に対応するために、ハイブリッドクラウドシステムを変革することを想定している。
提案したフレームワークは、エネルギー効率、性能、コスト効率において重要な課題に対処する。
この共同イニシアチブは、ハイブリッドクラウドをセキュアで効率的で持続可能なプラットフォームとして確立することを目的としています。
論文 参考訳(メタデータ) (2024-11-20T11:57:43Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
タスク・アンド・モーション・プランニング(タスク・アンド・モーション・プランニング、TAMP)は、自動化された計画問題の解決策を見つけるための問題である。
本稿では,TAMP問題のモデル化とベンチマークを行うための,汎用的でオープンソースのフレームワークを提案する。
移動エージェントと複数のタスク状態依存障害を含むTAMP問題を解決する革新的なメタ技術を導入する。
論文 参考訳(メタデータ) (2024-08-11T14:57:57Z) - Design Optimizer for Planar Soft-Growing Robot Manipulators [1.1888144645004388]
本研究は,ソフト成長ロボットの設計最適化のための新しいアプローチを提案する。
ソフトマニピュレータのキネマティックチェーンを最適化し、ターゲットに到達し、材料や資源の不要な過剰使用を避ける。
提案手法を最適性にアクセスするために, 提案手法を検証したところ, 解法の性能は著しく向上した。
論文 参考訳(メタデータ) (2023-10-05T08:23:17Z) - An Energy-Aware Approach to Design Self-Adaptive AI-based Applications
on the Edge [42.462246527457594]
我々は、自己適応型AIベースのアプリケーションの設計と展開にエネルギーを意識したアプローチを提案する。
本稿では,メタヒューリスティックな探索手順でシステムに自己適応できる構成の集合を決定する問題に対処する。
その結果、我々の自己適応型アプリケーションは、最大81%のエネルギーを節約し、2%から6%の精度で、非適応型ベースライン構成を上回ります。
論文 参考訳(メタデータ) (2023-08-31T09:33:44Z) - Partially Observable Markov Decision Processes in Robotics: A Survey [23.286897050793435]
この調査は,POMDPモデルとアルゴリズムの一方の端のギャップを埋めることと,他方の多様なロボット決定タスクに適用することを目的としている。
実践者にとって、この調査は、ロボットタスクにPOMDPをいつ、どのように適用するかを決定する上で重要なタスクの特徴をいくつか提供する。
POMDPアルゴリズム設計者にとって、この調査は、POMDPをロボットシステムに適用する際のユニークな課題に関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2022-09-21T13:24:20Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - Which Design Decisions in AI-enabled Mobile Applications Contribute to
Greener AI? [7.194465440864905]
このレポートは、AI対応アプリケーションの性能に対する設計決定の影響を定量化する実証的研究を行う計画で構成されている。
我々は、複数の画像分類とテキスト分類問題を解決するために、モバイルアプリケーションに画像ベースニューラルネットワークと言語ベースニューラルネットワークの両方を実装します。
論文 参考訳(メタデータ) (2021-09-28T07:30:28Z) - Energy-Efficient Multi-Orchestrator Mobile Edge Learning [54.28419430315478]
Mobile Edge Learning(MEL)は、エッジデバイス上で機械学習(ML)モデルの分散トレーニングを特徴とする、協調学習パラダイムである。
MELでは、異なるデータセットで複数の学習タスクが共存する可能性がある。
本稿では, エネルギー消費, 精度, 解複雑性のトレードオフを容易にする軽量なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-02T07:37:10Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。