論文の概要: Sample and Map from a Single Convex Potential: Generation using Conjugate Moment Measures
- arxiv url: http://arxiv.org/abs/2503.10576v1
- Date: Thu, 13 Mar 2025 17:28:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:54:49.910652
- Title: Sample and Map from a Single Convex Potential: Generation using Conjugate Moment Measures
- Title(参考訳): 単一凸電位からのサンプルとマップ:共役モーメント法による生成
- Authors: Nina Vesseron, Louis Béthune, Marco Cuturi,
- Abstract要約: 生成的モデリングの一般的なアプローチは、モデルフィッティングを2つのブロックに分割することである。
サンプリングとマッピングを行うこの代替ルートについて検討する。
任意の測度 $mathbbRd$ に対して $rho=nabla u,sharp,e-u$ というユニークなポテンシャル $u$rho が存在するという結果である。
- 参考スコア(独自算出の注目度): 22.7776491836979
- License:
- Abstract: A common approach to generative modeling is to split model-fitting into two blocks: define first how to sample noise (e.g. Gaussian) and choose next what to do with it (e.g. using a single map or flows). We explore in this work an alternative route that ties sampling and mapping. We find inspiration in moment measures, a result that states that for any measure $\rho$ supported on a compact convex set of $\mathbb{R}^d$, there exists a unique convex potential $u$ such that $\rho=\nabla u\,\sharp\,e^{-u}$. While this does seem to tie effectively sampling (from log-concave distribution $e^{-u}$) and action (pushing particles through $\nabla u$), we observe on simple examples (e.g., Gaussians or 1D distributions) that this choice is ill-suited for practical tasks. We study an alternative factorization, where $\rho$ is factorized as $\nabla w^*\,\sharp\,e^{-w}$, where $w^*$ is the convex conjugate of $w$. We call this approach conjugate moment measures, and show far more intuitive results on these examples. Because $\nabla w^*$ is the Monge map between the log-concave distribution $e^{-w}$ and $\rho$, we rely on optimal transport solvers to propose an algorithm to recover $w$ from samples of $\rho$, and parameterize $w$ as an input-convex neural network.
- Abstract(参考訳): 生成的モデリングの一般的なアプローチは、モデル適合性を2つのブロックに分割することである。
この作業で、サンプリングとマッピングを結びつける代替ルートを探求します。
モーメント測度におけるインスピレーションは、任意の測度$\rho$が$\mathbb{R}^d$のコンパクト凸集合上で支えられる場合、$\rho=\nabla u\,\sharp\,e^{-u}$ となるような一意の凸ポテンシャル $u$ が存在するという結果である。
これは(log-concave distribution $e^{-u}$から)効果的にサンプリングと作用($\nabla u$を介して粒子をパッシングする)を結びつけるように思われるが、この選択は実際的な問題に不適当な単純な例(例えばガウス分布や1D分布)で観察する。
ここで、$\rho$ は $\nabla w^*\,\sharp\,e^{-w}$ と分解され、$w^*$ は $w$ の凸共役である。
このアプローチを共役モーメント尺度と呼び、これらの例ではるかに直感的な結果を示す。
例えば、$\nabla w^*$ は、log-concaveディストリビューション $e^{-w}$ と $\rho$ の間の Monge マップであるため、最適なトランスポートソルバを用いて、$\rho$ のサンプルから$w$ を復元し、入力-convex ニューラルネットワークとして $w$ をパラメータ化するアルゴリズムを提案する。
関連論文リスト
- Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models [65.71506381302815]
本稿では、$p(mathbfxmidmathbfy) propto p_theta(mathbfx)$ という形式の後続分布からサンプリングするコストを償却する。
多くのモデルと関心の制約に対して、ノイズ空間の後方はデータ空間の後方よりも滑らかであり、そのような償却推論に対してより快適である。
論文 参考訳(メタデータ) (2025-02-10T19:49:54Z) - Debiasing and a local analysis for population clustering using
semidefinite programming [1.9761774213809036]
サブガウス分布の混合から引き出された小さいデータサンプルを$n$で分割する問題を考察する。
この研究は、起源の個体数に応じた集団化の応用によって動機付けられている。
論文 参考訳(メタデータ) (2024-01-16T03:14:24Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
非線形測定では、ほとんどの先行結果は一様ではない、すなわち、すべての$mathbfx*$に対してではなく、固定された$mathbfx*$に対して高い確率で保持される。
本フレームワークはGCSに1ビット/一様量子化観測と単一インデックスモデルを標準例として適用する。
また、指標集合が計量エントロピーが低い製品プロセスに対して、より厳密な境界を生み出す濃度不等式も開発する。
論文 参考訳(メタデータ) (2023-09-25T17:54:19Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
モノトン活性化に対する $mathbfxmapstosigma(mathbfwcdotmathbfx)$ の関数について検討する。
学習者の目標は仮説ベクトル $mathbfw$ that $F(mathbbw)=C, epsilon$ を高い確率で出力することである。
論文 参考訳(メタデータ) (2022-06-17T17:55:43Z) - Tight Bounds on the Hardness of Learning Simple Nonparametric Mixtures [9.053430799456587]
有限混合系における非パラメトリック分布の学習問題について検討する。
このようなモデルにおける成分分布を学習するために、サンプルの複雑さに厳密な境界を定めている。
論文 参考訳(メタデータ) (2022-03-28T23:53:48Z) - Data fission: splitting a single data point [27.500860533521713]
本稿では、このような有限サンプルの分割を実現するための、より一般的な方法論を提案する。
我々は、データ分割、データ彫刻、p値マスキングに代わる方法として、メソッドデータフィッションと呼ぶ。
トレンドフィルタリングやその他の回帰問題に対する選択後推論など,いくつかのアプリケーションでの手法を例示する。
論文 参考訳(メタデータ) (2021-12-21T10:27:04Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
高速グラフサンプリングの最近の進歩を利用して,短い動画を複数の段落に効率よく要約する問題について検討する。
実験結果から,本アルゴリズムは最先端の手法と同等の映像要約を実現し,複雑さを大幅に低減した。
論文 参考訳(メタデータ) (2021-10-21T18:43:00Z) - Sample-Efficient Reinforcement Learning for Linearly-Parameterized MDPs
with a Generative Model [3.749193647980305]
本稿では,一連の状態対応機能を有するマルコフ決定プロセス(MDP)について考察する。
モデルに基づくアプローチ(resp.$Q-learning)が、高い確率で$varepsilon$-Optimalポリシーを確実に学習することを示す。
論文 参考訳(メタデータ) (2021-05-28T17:49:39Z) - Structured Logconcave Sampling with a Restricted Gaussian Oracle [23.781520510778716]
我々は,複数のロジコンケーブファミリーを高精度にサンプリングするアルゴリズムを提案する。
凸最適化における近点法にインスパイアされた縮小フレームワークをさらに発展させる。
論文 参考訳(メタデータ) (2020-10-07T01:43:07Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
S$状態、$A$アクション、割引係数$gamma in (0,1)$、近似しきい値$epsilon > 0$の MDP が与えられた場合、$epsilon$-Optimal Policy を学ぶためのモデルなしアルゴリズムを提供する。
十分小さな$epsilon$の場合、サンプルの複雑さで改良されたアルゴリズムを示す。
論文 参考訳(メタデータ) (2020-06-06T13:34:41Z) - A Randomized Algorithm to Reduce the Support of Discrete Measures [79.55586575988292]
離散確率測度が$N$原子と$n$実数値関数の集合で成り立つと、元の$N$原子の$n+1$の部分集合で支えられる確率測度が存在する。
我々は、負の円錐によるバリセンターの簡単な幾何学的特徴付けを与え、この新しい測度を「グリード幾何学的サンプリング」によって計算するランダム化アルゴリズムを導出する。
次に、その性質を研究し、それを合成および実世界のデータにベンチマークして、$Ngg n$ regimeにおいて非常に有益であることを示す。
論文 参考訳(メタデータ) (2020-06-02T16:38:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。