論文の概要: Approximating the Total Variation Distance between Gaussians
- arxiv url: http://arxiv.org/abs/2503.11099v1
- Date: Fri, 14 Mar 2025 05:42:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:05:24.195954
- Title: Approximating the Total Variation Distance between Gaussians
- Title(参考訳): ガウス間の全変動距離の近似
- Authors: Arnab Bhattacharyya, Weiming Feng, Piyush Srivastava,
- Abstract要約: 総変分距離は統計学と確率論における中心的な重要性の計量である。
2つの$n$次元ガウス距離を近似するアルゴリズムを与える。
私たちの仕事における主要な技術ツールは、テレビ距離計算の最近の進歩を拡大するのに役立つ減量です。
- 参考スコア(独自算出の注目度): 11.279878424960227
- License:
- Abstract: The total variation distance is a metric of central importance in statistics and probability theory. However, somewhat surprisingly, questions about computing it algorithmically appear not to have been systematically studied until very recently. In this paper, we contribute to this line of work by studying this question in the important special case of multivariate Gaussians. More formally, we consider the problem of approximating the total variation distance between two multivariate Gaussians to within an $\epsilon$-relative error. Previous works achieved a fixed constant relative error approximation via closed-form formulas. In this work, we give algorithms that given any two $n$-dimensional Gaussians $D_1,D_2$, and any error bound $\epsilon > 0$, approximate the total variation distance $D := d_{TV}(D_1,D_2)$ to $\epsilon$-relative accuracy in $\text{poly}(n,\frac{1}{\epsilon},\log \frac{1}{D})$ operations. The main technical tool in our work is a reduction that helps us extend the recent progress on computing the TV-distance between discrete random variables to our continuous setting.
- Abstract(参考訳): 総変分距離は統計学と確率論における中心的な重要性の計量である。
しかし、驚くべきことに、アルゴリズムによる計算に関する疑問は、最近まで体系的に研究されていなかったようである。
本稿では,多変量ガウスの特別な場合において,この問題を研究することによって,この研究に寄与する。
より正式には、2つの多変量ガウス多様体間の全変動距離を$\epsilon$-relativeエラーに近似する問題を考える。
以前の研究は、閉形式公式による一定の相対誤差近似を達成した。
この研究では、任意の2つの$n$次元ガウス$D_1,D_2$と、任意の誤差境界$\epsilon > 0$を与えられたアルゴリズムを、合計変動距離$D := d_{TV}(D_1,D_2)$ to $\epsilon$-relative accuracy in $\text{poly}(n,\frac{1}{\epsilon},\log \frac{1}{D})$ operationとする。
我々の研究における主要な技術ツールは、離散確率変数間のテレビ距離の計算の最近の進歩を連続的な設定に拡張するのに役立つ還元である。
関連論文リスト
- Entangled Mean Estimation in High-Dimensions [36.97113089188035]
信号のサブセットモデルにおける高次元エンタングルド平均推定の課題について検討する。
最適誤差(polylogarithmic factor)は$f(alpha,N) + sqrtD/(alpha N)$であり、$f(alpha,N)$は1次元問題の誤差であり、第二項は準ガウス誤差率である。
論文 参考訳(メタデータ) (2025-01-09T18:31:35Z) - Relative-Translation Invariant Wasserstein Distance [82.6068808353647]
距離の新しい族、相対翻訳不変ワッサーシュタイン距離(RW_p$)を導入する。
我々は、$RW_p 距離もまた、分布変換に不変な商集合 $mathcalP_p(mathbbRn)/sim$ 上で定義される実距離測度であることを示す。
論文 参考訳(メタデータ) (2024-09-04T03:41:44Z) - Convergence of Unadjusted Langevin in High Dimensions: Delocalization of Bias [13.642712817536072]
問題の次元が$d$になるにつれて、所望の誤差内で収束を保証するのに必要なイテレーションの数が増加することを示す。
私たちが取り組んだ重要な技術的課題は、収束を測定するための$W_2,ellinfty$メートル法に一段階の縮約性がないことである。
論文 参考訳(メタデータ) (2024-08-20T01:24:54Z) - Near-Optimal Mean Estimation with Unknown, Heteroskedastic Variances [15.990720051907864]
Subset-of-Signalsモデルはヘテロスケダティック平均推定のベンチマークとして機能する。
我々のアルゴリズムは、このオープンな問題を対数的要因に分解する。
たとえ$d=2$であっても、我々の手法は各サンプルのばらつきを知るのに匹敵するレートを可能にします。
論文 参考訳(メタデータ) (2023-12-05T01:13:10Z) - Optimal Approximation of Zonoids and Uniform Approximation by Shallow
Neural Networks [2.7195102129095003]
以下の2つの問題について検討する。
1つ目は、$mathbbRd+1$の任意のソノイドがハウスドルフ距離で$n$の線分で近似できる誤差を決定することである。
2つ目は、変動空間上の浅いReLU$k$ニューラルネットワークの均一ノルムにおける最適近似率を決定することである。
論文 参考訳(メタデータ) (2023-07-28T03:43:17Z) - Data Structures for Density Estimation [66.36971978162461]
p$のサブリニア数($n$)が与えられた場合、主な結果は$k$のサブリニアで$v_i$を識別する最初のデータ構造になります。
また、Acharyaなどのアルゴリズムの改良版も提供します。
論文 参考訳(メタデータ) (2023-06-20T06:13:56Z) - Beyond Moments: Robustly Learning Affine Transformations with
Asymptotically Optimal Error [8.615625517708324]
サンプルから標準ハイパーキューブの未知アフィン変換を学習するためのリアルタイムアルゴリズムを提案する。
本アルゴリズムは,証明書の要求が満たされない場合に,未知アフィン変換の推定を反復的に改善する手法に基づいている。
論文 参考訳(メタデータ) (2023-02-23T19:13:30Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
我々は、任意の分布上でニューラルネットワークパラメータを補間する頑健性の低い$Omega(sqrtn/p)$を証明した。
次に、$n=mathrmpoly(d)$のとき、スムーズなデータに対する過度なパラメータ化の利点を示す。
我々は、$n=exp(omega(d))$ のとき、$O(1)$-Lipschitz の頑健な補間関数の存在を否定する。
論文 参考訳(メタデータ) (2022-02-23T16:10:23Z) - Small Covers for Near-Zero Sets of Polynomials and Learning Latent
Variable Models [56.98280399449707]
我々は、s$ of cardinality $m = (k/epsilon)o_d(k1/d)$ に対して $epsilon$-cover が存在することを示す。
構造的結果に基づいて,いくつかの基本的高次元確率モデル隠れ変数の学習アルゴリズムを改良した。
論文 参考訳(メタデータ) (2020-12-14T18:14:08Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z) - Robustly Learning any Clusterable Mixture of Gaussians [55.41573600814391]
本研究では,高次元ガウス混合系の対向ロバスト条件下での効率的な学習性について検討する。
理論的に最適に近い誤り証明である$tildeO(epsilon)$の情報を、$epsilon$-corrupted $k$-mixtureで学習するアルゴリズムを提供する。
我々の主な技術的貢献は、ガウス混合系からの新しい頑健な識別可能性証明クラスターであり、これは正方形の定度証明システムによって捉えることができる。
論文 参考訳(メタデータ) (2020-05-13T16:44:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。