論文の概要: Preference Elicitation for Multi-objective Combinatorial Optimization with Active Learning and Maximum Likelihood Estimation
- arxiv url: http://arxiv.org/abs/2503.11435v1
- Date: Fri, 14 Mar 2025 14:24:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:08:44.489815
- Title: Preference Elicitation for Multi-objective Combinatorial Optimization with Active Learning and Maximum Likelihood Estimation
- Title(参考訳): 能動学習と最大類似度推定を用いた多目的組合せ最適化のための優先的解法
- Authors: Marianne Defresne, Jayanta Mandi, Tias Guns,
- Abstract要約: 現実の最適化問題には、価格、製品品質、持続可能性など、相反する目標が伴うことが多い。
複数の目的に対処する計算効率のよい方法は、それらを線形結合のような単目的関数に集約することである。
Constructive Preference Elicitationフレームワークを構築し、これらの3つのプロパティをどのように改善できるかを示す。
- 参考スコア(独自算出の注目度): 8.033273941848254
- License:
- Abstract: Real-life combinatorial optimization problems often involve several conflicting objectives, such as price, product quality and sustainability. A computationally-efficient way to tackle multiple objectives is to aggregate them into a single-objective function, such as a linear combination. However, defining the weights of the linear combination upfront is hard; alternatively, the use of interactive learning methods that ask users to compare candidate solutions is highly promising. The key challenges are to generate candidates quickly, to learn an objective function that leads to high-quality solutions and to do so with few user interactions. We build upon the Constructive Preference Elicitation framework and show how each of the three properties can be improved: to increase the interaction speed we investigate using pools of (relaxed) solutions, to improve the learning we adopt Maximum Likelihood Estimation of a Bradley-Terry preference model; and to reduce the number of user interactions, we select the pair of candidates to compare with an ensemble-based acquisition function inspired from Active Learning. Our careful experimentation demonstrates each of these improvements: on a PC configuration task and a realistic multi-instance routing problem, our method selects queries faster, needs fewer queries and synthesizes higher-quality combinatorial solutions than previous CPE methods.
- Abstract(参考訳): 実生活における組合せ最適化の問題は、価格、製品品質、持続可能性など、相反する目標を伴うことが多い。
複数の目的に対処する計算効率のよい方法は、それらを線形結合のような単目的関数に集約することである。
しかし, 線形組み合わせの重み付けを事前に定義することは困難であり, あるいは, ユーザに対して候補解の比較を依頼する対話型学習手法を用いることは, 極めて有望である。
鍵となる課題は、候補を迅速に生成し、高品質なソリューションにつながる客観的な関数を学習し、ユーザインタラクションを少なくすることです。
提案手法は,構成的選好緩和フレームワークを基盤として,これら3つの特性のそれぞれをどのように改善できるかを示すものである。この3つの特性は,プールを用いた相互作用速度の向上,Bradley-Terry選好モデルの最大類似度推定の導入,アクティブラーニングから着想を得たアンサンブルベースの獲得関数との比較を行う。
提案手法は,PC構成タスクと現実的なマルチインスタンスルーティング問題において,クエリを高速に選択し,クエリを少なくし,従来のCPE手法よりも高品質な組合せ解を合成する。
関連論文リスト
- A Systematic Examination of Preference Learning through the Lens of Instruction-Following [83.71180850955679]
新たな合成データ生成パイプラインを用いて48,000の命令追従プロンプトを生成する。
合成プロンプトでは、リジェクションサンプリング(RS)とモンテカルロ木探索(MCTS)の2つの選好データセットキュレーション手法を用いる。
実験により、MCTSが生成した選好ペアにおける共有プレフィックスは、限界はあるが一貫した改善をもたらすことが明らかになった。
高コントラストの選好ペアは一般的に低コントラストのペアよりも優れているが、両者を組み合わせることで最高のパフォーマンスが得られることが多い。
論文 参考訳(メタデータ) (2024-12-18T15:38:39Z) - AQA: Adaptive Question Answering in a Society of LLMs via Contextual Multi-Armed Bandit [59.10281630985958]
質問応答(QA)では、異なる質問を異なる回答戦略で効果的に扱うことができる。
本稿では,各質問に対して最適なQA戦略を適応的に選択する動的手法を提案する。
提案手法は,複数のモジュールを持つQAシステムの適応的オーケストレーションに有効であることを示す。
論文 参考訳(メタデータ) (2024-09-20T12:28:18Z) - Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
本稿では,バッチ取得のための新しいグリーディ型サブセット選択アルゴリズムを提案する。
赤蛍光タンパク質に関する実験により,提案手法は1.69倍少ないクエリでベースライン性能を達成できることが判明した。
論文 参考訳(メタデータ) (2024-06-21T05:57:08Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Continuous Tensor Relaxation for Finding Diverse Solutions in Combinatorial Optimization Problems [0.6906005491572401]
本研究では、教師なし学習(UL)に基づくCOソルバのための連続的アン緩和(CTRA)を提案する。
CTRAは、単一のトレーニング実行で多様なソリューションを見つけるための計算効率のよいフレームワークである。
数値実験により、CTRAにより、ULベースの解法は、既存の解法を繰り返すよりもはるかに高速にこれらの多様な解を見つけることができることが示された。
論文 参考訳(メタデータ) (2024-02-03T15:31:05Z) - Batch Multi-Fidelity Active Learning with Budget Constraints [37.420149663263835]
Batch Multi-Fidelity Active Learning with Budget Constraints (BMFAL-BC)
本稿では,多要素クエリのバッチと対象関数間の相互情報を計測する新しいバッチ取得関数を提案する。
計算物理学と工学のいくつかの応用において,本手法の利点を示す。
論文 参考訳(メタデータ) (2022-10-23T11:39:56Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Efficient Active Search for Combinatorial Optimization Problems [1.6543719822033436]
能動探索により、学習したモデルが、トレーニング中に見られたものよりもはるかに大きいインスタンスを効果的に解決できることが示される。
提案手法は、与えられたモデルの探索性能を大幅に向上する簡単な方法を提供し、ルーティング問題に対する最先端の機械学習手法より優れている。
論文 参考訳(メタデータ) (2021-06-09T15:08:03Z) - Pareto Multi-Task Learning [53.90732663046125]
マルチタスク学習は複数の相関タスクを同時に解くための強力な方法である。
異なるタスクが互いに衝突する可能性があるため、すべてのタスクを最適化するひとつのソリューションを見つけることは、しばしば不可能である。
近年,マルチタスク学習を多目的最適化として活用することにより,タスク間のトレードオフが良好である1つのパレート最適解を求める方法が提案されている。
論文 参考訳(メタデータ) (2019-12-30T08:58:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。