論文の概要: NeuMC -- a package for neural sampling for lattice field theories
- arxiv url: http://arxiv.org/abs/2503.11482v1
- Date: Fri, 14 Mar 2025 15:07:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:05:36.363144
- Title: NeuMC -- a package for neural sampling for lattice field theories
- Title(参考訳): NeuMC -- 格子場理論のためのニューラルサンプリングパッケージ
- Authors: Piotr Bialas, Piotr Korcyl, Tomasz Stebel, Dawid Zapolski,
- Abstract要約: 格子場理論におけるニューラルサンプリングの促進を目的としたpytorchに基づくtextttNeuMCソフトウェアパッケージを提案する。
- 参考スコア(独自算出の注目度): 0.01499944454332829
- License:
- Abstract: We present the \texttt{NeuMC} software package, based on \pytorch, aimed at facilitating the research on neural samplers in lattice field theories. Neural samplers based on normalizing flows are becoming increasingly popular in the context of Monte-Carlo simulations as they can effectively approximate target probability distributions, possibly alleviating some shortcomings of the Markov chain Monte-Carlo methods. Our package provides tools to create such samplers for two-dimensional field theories.
- Abstract(参考訳): 本稿では, 格子場理論におけるニューラルサンプリングの研究を促進することを目的とした, \pytorch をベースとした \texttt{NeuMC} ソフトウェアパッケージを提案する。
正規化フローに基づくニューラルサンプリングは、ターゲット確率分布を効果的に近似することができ、マルコフ連鎖モンテカルロ法の欠点を軽減できるため、モンテカルロシミュレーションの文脈でますます人気が高まっている。
本パッケージは,2次元場理論のためのサンプル作成ツールを提供する。
関連論文リスト
- Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
本研究では、円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
後部推論のために,高速ギブズサンプリングに寄与するストラトノビッチ様拡張法を導入する。
本研究では,このモデルを用いて風向予測と走行歩行周期のパーセンテージを関節角度の関数として適用する実験を行った。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows [2.2530496464901106]
連続正規化フロー(CNF)は、ニューラルネットワークを用いて前記経路を生成するベクトル場をモデル化することにより、基準分布と目標分布の間の確率経路を学習する。
近年,Lipman et al. (2022) は生成モデルにおけるCNFsの簡易かつ安価な学習法であるフローマッチング (FM) を導入した。
本稿では,この手法をマルコフサンプリング法をFM目標評価に応用し,学習したCNFを用いてモンテカルロサンプリングを改善することにより,確率的推論に再利用する。
論文 参考訳(メタデータ) (2024-05-23T10:08:19Z) - Accelerating Markov Chain Monte Carlo sampling with diffusion models [0.0]
本稿では,Metropolis-Hastingsアルゴリズムと拡散モデルを組み合わせることで,マルコフ・チェイン・モンテカルロ(MCMC)サンプリングを高速化する新しい手法を提案する。
画像合成の文脈における拡散モデルについて概観し、低次元データアレイに適した流線形拡散モデルを提供する。
提案手法は,後方の正確な表現を得るために必要な可能性評価の回数を大幅に削減する。
論文 参考訳(メタデータ) (2023-09-04T09:03:41Z) - Gauge-equivariant flow models for sampling in lattice field theories
with pseudofermions [51.52945471576731]
本研究は,フェルミオン行列式の推定器として擬フェルミオンを用いたフェルミオン格子場理論におけるフローベースサンプリングのためのゲージ不変アーキテクチャを提案する。
これは最先端の格子場理論計算におけるデフォルトのアプローチであり、QCDのような理論へのフローモデルの実践的応用に欠かせない。
論文 参考訳(メタデータ) (2022-07-18T21:13:34Z) - Learning Lattice Quantum Field Theories with Equivariant Continuous
Flows [10.124564216461858]
格子場理論の高次元確率分布から抽出する機械学習手法を提案する。
提案手法を$phi4$理論で検証し,提案したフローベース手法のサンプリング効率を体系的に上回っていることを示す。
論文 参考訳(メタデータ) (2022-07-01T09:20:05Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
ベイズ構造学習では、データから有向非巡回グラフ(DAG)上の分布を推定することに興味がある。
近年,ジェネレーティブ・フロー・ネットワーク(GFlowNets)と呼ばれる確率モデルのクラスが,ジェネレーティブ・モデリングの一般的なフレームワークとして紹介されている。
DAG-GFlowNetと呼ばれる本手法は,DAGよりも後方の正確な近似を提供する。
論文 参考訳(メタデータ) (2022-02-28T15:53:10Z) - Stochastic normalizing flows as non-equilibrium transformations [62.997667081978825]
正規化フローは従来のモンテカルロシミュレーションよりも効率的に格子場理論をサンプリングするための経路を提供することを示す。
本稿では,この拡張された生成モデルの効率を最適化する戦略と応用例を示す。
論文 参考訳(メタデータ) (2022-01-21T19:00:18Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z) - Generative Neural Samplers for the Quantum Heisenberg Chain [0.3655021726150368]
生成神経サンプラーは、統計物理学や量子場理論における問題に対するモンテカルロ法を補完するアプローチを提供する。
本研究は、実世界の低次元スピン系の可観測性を推定する生成神経サンプラーの能力をテストする。
論文 参考訳(メタデータ) (2020-12-18T14:28:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。