Sampling Innovation-Based Adaptive Compressive Sensing
- URL: http://arxiv.org/abs/2503.13241v1
- Date: Mon, 17 Mar 2025 14:54:13 GMT
- Title: Sampling Innovation-Based Adaptive Compressive Sensing
- Authors: Zhifu Tian, Tao Hu, Chaoyang Niu, Di Wu, Shu Wang,
- Abstract summary: Scene-aware Adaptive Compressive Sensing (ACS) has attracted significant interest due to its promising capability for efficient and high-fidelity acquisition of scene images.<n>In this paper, we introduce a Sampling Innovation-Based ACS (SIB-ACS) method that can effectively identify and allocate sampling to challenging image reconstruction areas.<n>Extensive experiments demonstrate that the proposed SIB-ACS method significantly outperforms the state-of-the-art methods in terms of image reconstruction fidelity and visual effects.
- Score: 12.984866049391709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scene-aware Adaptive Compressive Sensing (ACS) has attracted significant interest due to its promising capability for efficient and high-fidelity acquisition of scene images. ACS typically prescribes adaptive sampling allocation (ASA) based on previous samples in the absence of ground truth. However, when confronting unknown scenes, existing ACS methods often lack accurate judgment and robust feedback mechanisms for ASA, thus limiting the high-fidelity sensing of the scene. In this paper, we introduce a Sampling Innovation-Based ACS (SIB-ACS) method that can effectively identify and allocate sampling to challenging image reconstruction areas, culminating in high-fidelity image reconstruction. An innovation criterion is proposed to judge ASA by predicting the decrease in image reconstruction error attributable to sampling increments, thereby directing more samples towards regions where the reconstruction error diminishes significantly. A sampling innovation-guided multi-stage adaptive sampling (AS) framework is proposed, which iteratively refines the ASA through a multi-stage feedback process. For image reconstruction, we propose a Principal Component Compressed Domain Network (PCCD-Net), which efficiently and faithfully reconstructs images under AS scenarios. Extensive experiments demonstrate that the proposed SIB-ACS method significantly outperforms the state-of-the-art methods in terms of image reconstruction fidelity and visual effects. Codes are available at https://github.com/giant-pandada/SIB-ACS_CVPR2025.
Related papers
- SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models [52.40011613324083]
Joint source-channel coding systems (DeepJSCC) have recently demonstrated remarkable performance in wireless image transmission.<n>Existing methods focus on minimizing distortion between the transmitted image and the reconstructed version at the receiver, often overlooking perceptual quality.<n>We propose SING, a novel framework that formulates the recovery of high-quality images from corrupted reconstructions as an inverse problem.
arXiv Detail & Related papers (2025-03-16T12:32:11Z) - EchoIR: Advancing Image Restoration with Echo Upsampling and Bi-Level Optimization [0.0]
We introduce the EchoIR, an UNet-like image restoration network with a bilateral learnable upsampling mechanism to bridge this gap.<n>In pursuit of modeling a hierarchical model of image restoration and upsampling tasks, we propose the Approximated Sequential Bi-level Optimization (AS-BLO)
arXiv Detail & Related papers (2024-12-10T06:27:08Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - You Only Train Once: A Unified Framework for Both Full-Reference and No-Reference Image Quality Assessment [45.62136459502005]
We propose a network to perform full reference (FR) and no reference (NR) IQA.
We first employ an encoder to extract multi-level features from input images.
A Hierarchical Attention (HA) module is proposed as a universal adapter for both FR and NR inputs.
A Semantic Distortion Aware (SDA) module is proposed to examine feature correlations between shallow and deep layers of the encoder.
arXiv Detail & Related papers (2023-10-14T11:03:04Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - JSRNN: Joint Sampling and Reconstruction Neural Networks for High
Quality Image Compressed Sensing [8.902545322578925]
Two sub-networks, which are the sampling sub-network and the reconstruction sub-network, are included in the proposed framework.
In the reconstruction sub-network, a cascade network combining stacked denoising autoencoder (SDA) and convolutional neural network (CNN) is designed to reconstruct signals.
This framework outperforms many other state-of-the-art methods, especially at low sampling rates.
arXiv Detail & Related papers (2022-11-11T02:20:30Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
We propose a novel self-supervised framework to detect objects in degraded low resolution images.
Our methods has achieved superior performance compared with existing methods when facing variant degradation situations.
arXiv Detail & Related papers (2022-08-05T09:36:13Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Reliability-based Mesh-to-Grid Image Reconstruction [0.0]
This paper presents a novel method for the reconstruction of images from samples located at non-integer positions, called mesh.
The proposed method relies on a set of initial estimates that are later refined by a new reliability-based content-adaptive framework.
arXiv Detail & Related papers (2022-05-20T12:32:52Z) - Adaptive and Cascaded Compressive Sensing [10.162966219929887]
Scene-dependent adaptive compressive sensing (CS) has been a long pursuing goal which has huge potential in significantly improving the performance of CS.
We propose a restricted isometry property (RIP) condition based error clamping, which could directly predict the reconstruction error.
We also propose a cascaded feature fusion reconstruction network that could efficiently utilize the information derived from different adaptive sampling stages.
arXiv Detail & Related papers (2022-03-21T07:50:24Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - Learning Sampling and Model-Based Signal Recovery for Compressed Sensing
MRI [30.838990115880197]
Compressed sensing (CS) MRI relies on adequate undersampling of the k-space to accelerate the acquisition without compromising image quality.
We propose joint learning of both task-adaptive k-space sampling and a subsequent model-based proximal-gradient recovery network.
The proposed combination of a highly flexible sampling model and a model-based (sampling-adaptive) image reconstruction network facilitates exploration and efficient training, yielding improved MR image quality.
arXiv Detail & Related papers (2020-04-22T12:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.