論文の概要: FLP-XR: Future Location Prediction on Extreme Scale Maritime Data in Real-time
- arxiv url: http://arxiv.org/abs/2503.13491v2
- Date: Wed, 19 Mar 2025 07:34:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 19:05:26.051198
- Title: FLP-XR: Future Location Prediction on Extreme Scale Maritime Data in Real-time
- Title(参考訳): FLP-XR: リアルタイムにおける極大海事データの将来の位置予測
- Authors: George S. Theodoropoulos, Andreas Patakis, Andreas Tritsarolis, Yannis Theodoridis,
- Abstract要約: 本稿では,海上移動データを活用するモデルであるFLP-XRを紹介し,高精度な予測を行うロバストなフレームワークを構築する。
3つの実世界のAISデータセットを用いた大規模な実験により,本手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 0.8937169040399775
- License:
- Abstract: Movements of maritime vessels are inherently complex and challenging to model due to the dynamic and often unpredictable nature of maritime operations. Even within structured maritime environments, such as shipping lanes and port approaches, where vessels adhere to navigational rules and predefined sea routes, uncovering underlying patterns is far from trivial. The necessity for accurate modeling of the mobility of maritime vessels arises from the numerous applications it serves, including risk assessment for collision avoidance, optimization of shipping routes, and efficient port management. This paper introduces FLP-XR, a model that leverages maritime mobility data to construct a robust framework that offers precise predictions while ensuring extremely fast training and inference capabilities. We demonstrate the efficiency of our approach through an extensive experimental study using three real-world AIS datasets. According to the experimental results, FLP-XR outperforms the current state-of-the-art in many cases, whereas it performs 2-3 orders of magnitude faster in terms of training and inference.
- Abstract(参考訳): 海洋船の動きは本質的に複雑で、海洋活動の動的かつ予測不可能な性質のためにモデル化が困難である。
船舶が航法規則や事前定義された航路に従属する航路や港への接近など、海洋環境の構造化でさえも、その基礎となるパターンを明らかにすることは決して容易ではない。
海上船舶のモビリティの正確なモデリングの必要性は、衝突回避のリスク評価、輸送経路の最適化、効率的な港湾管理など、多数の応用から生じている。
本稿では,海中モビリティデータを活用するモデルであるFLP-XRについて紹介する。
3つの実世界のAISデータセットを用いた大規模な実験により,本手法の有効性を実証する。
実験結果によると、FLP-XRは現在の最先端技術よりも優れており、トレーニングや推論の点で2~3桁高速である。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Outlier detection in maritime environments using AIS data and deep recurrent architectures [5.399126243770847]
本稿では,海上監視のための深部再帰モデルに基づく手法を,公開可能な自動識別システム(AIS)データ上で提案する。
このセットアップはディープ・リカレント・ニューラルネットワーク(RNN)ベースのモデルを使用して、観測された船の動きパターンを符号化し、再構築する。
提案手法は,観測された動作パターンと再構成された動作パターンの計算誤差に対するしきい値決定機構に基づく。
論文 参考訳(メタデータ) (2024-06-14T12:15:15Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
様々な動物が環境の手がかりを使って正確なナビゲーションをしている。
動物航法にインスパイアされたこの研究は、長距離水中航法のためのバイオニックでデータ駆動のアプローチを提案する。
提案手法では,GPSシステムや地理地図を必要とせず,測地データを用いてナビゲーションを行う。
論文 参考訳(メタデータ) (2024-02-06T13:20:56Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
洪水浸水予測は洪水前後の緊急計画に重要な情報を提供する。
近年,高分解能な流体力学モデリングが普及しつつあるが,道路の洪水範囲やリアルタイムのビルディングレベルは依然として計算的に要求されている。
洪水範囲と浸水深度予測のためのハイブリッドプロセスベースおよびデータ駆動機械学習(ML)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T22:49:50Z) - Towards Improved Prediction of Ship Performance: A Comparative Analysis
on In-service Ship Monitoring Data for Modeling the Speed-Power Relation [0.0]
我々は、データ駆動機械学習アルゴリズムの精度を、船舶の性能を評価する従来の方法と比較する。
以上の結果から,ニューラルネットワークが基本原理に従って確立された半経験式よりも優れていたことが示唆された。
これらの結果から,データ駆動型アルゴリズムは実用アプリケーションにおける船体性能の予測に有効である可能性が示唆された。
論文 参考訳(メタデータ) (2022-12-26T09:39:33Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
地球温暖化は北極を海洋活動に利用し、信頼性の高い海氷予測の需要を生み出した。
本研究では,海氷予測のためのU-Netモデルの性能を,今後10日間にわたって検証した。
この深層学習モデルは、気象データの追加と複数の地域での訓練により、単純なベースラインをかなりの差で上回り、その品質を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-10-17T09:14:35Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
水中音響から風速時系列を検索するための深層学習手法を提案する。
我々のアプローチは、事前の物理知識と計算効率の両面から恩恵を受けるために、データ同化と学習ベースのフレームワークをブリッジする。
論文 参考訳(メタデータ) (2022-08-18T15:27:40Z) - Data-Driven System Identification of 6-DoF Ship Motion in Waves with
Neural Networks [0.0]
現在の波動環境と船の状態から船の応答の短期的予測は、有人・無人船の意思決定の強化を可能にした。
長い短期記憶(LSTM)ニューラルネットワークを用いて開発され、フリーランのデビッド・テイラー・モデル・ベースン(DTMB)5415駆逐艦の動作を表現する。
波高の時間履歴は、推定された遭遇フレームと共に移動し、ニューラルネットワークへの入力として機能する人工波プローブによって与えられ、出力は6-DOFの時間的船動応答である。
論文 参考訳(メタデータ) (2021-11-02T17:51:35Z) - Ship Performance Monitoring using Machine-learning [2.1485350418225244]
船舶の流体力学性能は, 海洋汚濁や防汚塗料システムの条件などにより, 寿命によって異なる。
現在の研究は機械学習(ML)手法を用いて、オンボードで記録されたサービス内データを用いて船の流体力学的性能を推定する。
論文 参考訳(メタデータ) (2021-10-07T16:18:16Z) - Continuous Control with Deep Reinforcement Learning for Autonomous
Vessels [8.491129580099757]
本研究では, エージェントの性能向上を図るために, 状態-作用回転と呼ばれる新しい戦略を提案する。
CVN上における状態-作用回転は目的地への到着率を一定に向上することを示す実験結果が得られた。
論文 参考訳(メタデータ) (2021-06-27T03:12:32Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
そこで我々は,エージェントが自我中心のRGB-D観測を用いて,その占有状態を可視領域を超えて推定する,占有予測を提案する。
エゴセントリックなビューとトップダウンマップの両方でコンテキストを活用することで、私たちのモデルは環境のより広いマップを予測できます。
われわれのアプローチは、2020 Habitat PointNav Challengeの優勝だ。
論文 参考訳(メタデータ) (2020-08-21T03:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。