論文の概要: WMINet: A Wheel-Mounted Inertial Learning Approach For Mobile-Robot Positioning
- arxiv url: http://arxiv.org/abs/2503.13568v1
- Date: Mon, 17 Mar 2025 10:43:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:17:00.619450
- Title: WMINet: A Wheel-Mounted Inertial Learning Approach For Mobile-Robot Positioning
- Title(参考訳): WMINet:移動ロボットの位置決めのための車輪付き慣性学習アプローチ
- Authors: Gal Versano, Itzik Klein,
- Abstract要約: 我々はWMINETを車輪搭載型慣性深度学習手法として提案し,その慣性センサのみに基づいて移動ロボットの位置を推定する。
そこで本研究では,車載アプローチと移動ロボットの周期軌道駆動という,慣性ドリフトを減らすための2つの一般的な実践的手法をマージする。
我々のアプローチは最先端のアプローチよりも66%改善した。
- 参考スコア(独自算出の注目度): 2.915868985330569
- License:
- Abstract: Autonomous mobile robots are widely used for navigation, transportation, and inspection tasks indoors and outdoors. In practical situations of limited satellite signals or poor lighting conditions, navigation depends only on inertial sensors. In such cases, the navigation solution rapidly drifts due to inertial measurement errors. In this work, we propose WMINet a wheel-mounted inertial deep learning approach to estimate the mobile robot's position based only on its inertial sensors. To that end, we merge two common practical methods to reduce inertial drift: a wheel-mounted approach and driving the mobile robot in periodic trajectories. Additionally, we enforce a wheelbase constraint to further improve positioning performance. To evaluate our proposed approach we recorded using the Rosbot-XL a wheel-mounted initial dataset totaling 190 minutes, which is made publicly available. Our approach demonstrated a 66\% improvement over state-of-the-art approaches. As a consequence, our approach enables navigation in challenging environments and bridges the pure inertial gap. This enables seamless robot navigation using only inertial sensors for short periods.
- Abstract(参考訳): 自律移動ロボットは、屋内および屋外でのナビゲーション、輸送、検査作業に広く利用されている。
衛星信号の限られた状況や照明条件の悪い状況では、ナビゲーションは慣性センサーにのみ依存する。
このような場合、慣性測定誤差によりナビゲーション解は急速にドリフトする。
本研究では,車載型慣性深度学習手法としてWMINETを提案し,その慣性センサに基づいて移動ロボットの位置を推定する。
そこで本研究では,車載アプローチと移動ロボットの周期軌道駆動という,慣性ドリフトを減らすための2つの一般的な実践的手法をマージする。
さらに、位置決め性能をさらに向上するために、ホイールベース制約を適用します。
提案手法を評価するために、Rosbot-XLを用いて、車輪搭載初期データセットを190分記録した。
我々の手法は最先端のアプローチよりも66 %改善した。
その結果,本手法は,難易度の高い環境におけるナビゲーションを可能にし,純粋な慣性ギャップを橋渡しする。
これにより、短時間の慣性センサーのみを使用したシームレスなロボットナビゲーションが可能になる。
関連論文リスト
- Learning Robust Autonomous Navigation and Locomotion for Wheeled-Legged Robots [50.02055068660255]
都市環境のナビゲーションは、ロボットにとってユニークな課題であり、移動とナビゲーションのための革新的なソリューションを必要としている。
本研究は, 適応移動制御, 移動対応ローカルナビゲーション計画, 市内の大規模経路計画を含む, 完全に統合されたシステムを導入する。
モデルフリー強化学習(RL)技術と特権学習を用いて,多目的移動制御系を開発した。
私たちのコントローラーは大規模な都市航法システムに統合され、スイスのチューリッヒとスペインのセビリアで自律的、キロメートル規模の航法ミッションによって検証されます。
論文 参考訳(メタデータ) (2024-05-03T00:29:20Z) - How Does It Feel? Self-Supervised Costmap Learning for Off-Road Vehicle
Traversability [7.305104984234086]
オフロード環境における地形の移動性の推定には、ロボットとこれらの地形の間の複雑な相互作用のダイナミクスを推論する必要がある。
本研究では,外外環境情報と固有地形相互作用フィードバックを組み合わせることで,トラバーサビリティのコストマップを予測する手法を提案する。
論文 参考訳(メタデータ) (2022-09-22T05:18:35Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
社会ナビゲーションは、ロボットのような自律的なエージェントが、人間のような他の知的エージェントの存在下で、社会的に従順な方法でナビゲートする能力である。
私たちのデータセットには8.7時間、128の軌道、25マイルの社会的に適合した人間の遠隔運転デモが含まれています。
論文 参考訳(メタデータ) (2022-03-28T19:09:11Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - Coupling Vision and Proprioception for Navigation of Legged Robots [65.59559699815512]
我々は視覚と受容の相補的な強みを利用して、脚のあるロボットでポイントゴールナビゲーションを実現する。
車輪付きロボット(LoCoBot)のベースラインよりも優れた性能を示す。
また,センサーと計算能力を備えた四足歩行ロボットに,我々のシステムを実環境に展開することも示す。
論文 参考訳(メタデータ) (2021-12-03T18:59:59Z) - Learning High-Speed Flight in the Wild [101.33104268902208]
複雑な自然環境や人工環境を高速で自律的に飛行するエンド・ツー・エンドのアプローチを提案する。
鍵となる原理は、雑音の知覚観測を直接、後退水平方向に無衝突軌道にマッピングすることである。
現実的なセンサノイズをシミュレートすることにより,シミュレーションから現実環境へのゼロショット転送を実現する。
論文 参考訳(メタデータ) (2021-10-11T09:43:11Z) - Robot Localization and Navigation through Predictive Processing using
LiDAR [0.0]
本稿では,レーザーセンサを用いた位置認識とナビゲーションに応用した,予測処理にインスパイアされたアプローチの実証について述べる。
我々は自己教師型学習を通してレーザ生成モデルを学び、オンライン状態推定とナビゲーションの両方を行う。
その結果,オドメトリーの欠如による粒子フィルタとの比較では,状態推定性能が向上した。
論文 参考訳(メタデータ) (2021-09-09T09:58:00Z) - XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision
Trees [55.9643422180256]
本稿では,ロボットの密集した動的環境における衝突のない軌道を計算するためのセンサベース学習ナビゲーションアルゴリズムを提案する。
我々のアプローチは、sim2realパラダイムを用いて訓練された深層強化学習に基づくエキスパートポリシーを使用する。
シミュレーション環境でのアルゴリズムの利点を強調し、移動中の歩行者の間でClearpath Jackalロボットをナビゲートする。
論文 参考訳(メタデータ) (2021-04-22T01:33:10Z) - Rule-Based Reinforcement Learning for Efficient Robot Navigation with
Space Reduction [8.279526727422288]
本稿では,強化学習(RL)技術を用いた効率的なナビゲーションに焦点を当てた。
軌道を縮小するために減速ルールを採用し、冗長な探査空間を効果的に削減します。
ヘックスグリッド環境における実際のロボットナビゲーション問題に対する実験は、RuRLが航法性能を向上させることを実証している。
論文 参考訳(メタデータ) (2021-04-15T07:40:27Z) - Autonomous Off-road Navigation over Extreme Terrains with
Perceptually-challenging Conditions [7.514178230130502]
移動性ストレス要素を用いた知覚困難環境におけるレジリエント自律計算の枠組みを提案する。
リアルタイムに堅牢なマルチファイアリティトラバーサビリティ推定を生成するための高速設定アルゴリズムを提案する。
提案手法は、スキッドステアや追尾ロボット、高速RCカー、脚ロボットなど、複数の物理的システムに展開された。
論文 参考訳(メタデータ) (2021-01-26T22:13:01Z) - High-Speed Robot Navigation using Predicted Occupancy Maps [0.0]
ロボットがセンサの地平線を越えて広がる空間を高速で予測できるアルゴリズム手法について検討する。
我々は、人間のアノテートラベルを必要とせず、実世界のデータからトレーニングされた生成ニューラルネットワークを用いてこれを実現する。
既存の制御アルゴリズムを拡張し、予測空間を活用することで、衝突のない計画とナビゲーションを高速で改善します。
論文 参考訳(メタデータ) (2020-12-22T16:25:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。