論文の概要: ClimateGS: Real-Time Climate Simulation with 3D Gaussian Style Transfer
- arxiv url: http://arxiv.org/abs/2503.14845v1
- Date: Wed, 19 Mar 2025 03:01:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:22:23.166385
- Title: ClimateGS: Real-Time Climate Simulation with 3D Gaussian Style Transfer
- Title(参考訳): 気候調査:3Dガウス型移動を用いたリアルタイム気候シミュレーション
- Authors: Yuezhen Xie, Meiying Zhang, Qi Hao,
- Abstract要約: ClimateGSは3Dガウス表現と物理シミュレーションを統合した新しいフレームワークで、リアルタイムな気候効果のレンダリングを可能にする。
我々は、MipNeRF360とTurps and TemplesのClimateGSを評価し、SOTA 2D/3D法と同等または優れた視覚的品質のリアルタイムレンダリングを実演した。
- 参考スコア(独自算出の注目度): 11.17376076195671
- License:
- Abstract: Adverse climate conditions pose significant challenges for autonomous systems, demanding reliable perception and decision-making across diverse environments. To better simulate these conditions, physically-based NeRF rendering methods have been explored for their ability to generate realistic scene representations. However, these methods suffer from slow rendering speeds and long preprocessing times, making them impractical for real-time testing and user interaction. This paper presents ClimateGS, a novel framework integrating 3D Gaussian representations with physical simulation to enable real-time climate effects rendering. The novelty of this work is threefold: 1) developing a linear transformation for 3D Gaussian photorealistic style transfer, enabling direct modification of spherical harmonics across bands for efficient and consistent style adaptation; 2) developing a joint training strategy for 3D style transfer, combining supervised and self-supervised learning to accelerate convergence while preserving original scene details; 3) developing a real-time rendering method for climate simulation, integrating physics-based effects with 3D Gaussian to achieve efficient and realistic rendering. We evaluate ClimateGS on MipNeRF360 and Tanks and Temples, demonstrating real-time rendering with comparable or superior visual quality to SOTA 2D/3D methods, making it suitable for interactive applications.
- Abstract(参考訳): 逆の気候条件は自律システムに重大な課題をもたらし、様々な環境における信頼性の高い認識と意思決定を要求する。
これらの条件をより良くシミュレートするために,現実的なシーン表現を生成するために,物理ベースのNeRFレンダリング手法が検討されている。
しかし、これらの手法はレンダリング速度の遅さと長い前処理時間に悩まされており、リアルタイムテストやユーザインタラクションでは実用的ではない。
本稿では,3次元ガウス表現と物理シミュレーションを統合し,リアルタイムな気候効果のレンダリングを可能にする新しいフレームワークであるClimateGSを提案する。
この作品の斬新さは3倍です。
1) 3次元ガウスフォトリアリスティックなスタイル伝達のための線形変換を開発し、効率よく一貫したスタイル適応のために、バンド間の球面調和を直接修正することができる。
2 監督的学習と自己指導的学習を組み合わせて、オリジナルシーンの詳細を保存しつつ、収束を加速する3Dスタイル伝達のための共同学習戦略の開発。
3) 環境シミュレーションのためのリアルタイムレンダリング手法を開発し, 物理効果と3次元ガウス効果を統合し, 効率的かつ現実的なレンダリングを実現する。
我々はMipNeRF360 と Tanks and Temples のClimateGS を評価し,SOTA 2D/3D 法と同等あるいは優れた視覚的品質のリアルタイムレンダリングを実演し,対話型アプリケーションに適していることを示した。
関連論文リスト
- Vid2Sim: Realistic and Interactive Simulation from Video for Urban Navigation [62.5805866419814]
Vid2Simは、ニューラル3Dシーンの再構築とシミュレーションのためのスケーラブルで費用効率のよいReal2simパイプラインを通じてsim2realギャップをブリッジする新しいフレームワークである。
実験により、Vid2Simはデジタル双生児と現実世界の都市ナビゲーションの性能を31.2%、成功率68.3%で大幅に改善することが示された。
論文 参考訳(メタデータ) (2025-01-12T03:01:15Z) - SpectroMotion: Dynamic 3D Reconstruction of Specular Scenes [7.590932716513324]
本稿では,3次元ガウススティング(3DGS)と物理ベースレンダリング(PBR)と変形場を組み合わせた新しいアプローチであるSpectroMotionを提案する。
現実の動的スペキュラシーンを合成できる唯一の3DGS法であり、複雑な、動的、およびスペキュラシーンのレンダリングにおける最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2024-10-22T17:59:56Z) - Dynamic 3D Gaussian Fields for Urban Areas [60.64840836584623]
大規模でダイナミックな都市部における新規ビュー合成(NVS)のための効率的なニューラル3Dシーン表現法を提案する。
本研究では,大規模都市にスケールするニューラルネットワークシーン表現である4DGFを提案する。
論文 参考訳(メタデータ) (2024-06-05T12:07:39Z) - Gaussian Time Machine: A Real-Time Rendering Methodology for Time-Variant Appearances [10.614750331310804]
軽量マルチ層パーセプトロン(MLP)で復号された離散時間埋め込みベクトルを持つガウス原始体の時間依存特性をモデル化したガウス時機械(GTM)を提案する。
GTMは3つのデータセットで最先端のレンダリングフィリティを達成し、レンダリングにおけるNeRFベースのレンダリングよりも100倍高速である。
論文 参考訳(メタデータ) (2024-05-22T14:40:42Z) - ASH: Animatable Gaussian Splats for Efficient and Photoreal Human Rendering [62.81677824868519]
本稿では,動的人間をリアルタイムに写実的にレンダリングするためのアニマタブルなガウススプラッティング手法を提案する。
我々は、被服をアニマタブルな3Dガウスとしてパラメータ化し、画像空間に効率よく切り込み、最終的なレンダリングを生成する。
我々は、ポーズ制御可能なアバターの競合手法を用いてASHをベンチマークし、我々の手法が既存のリアルタイムメソッドよりも大きなマージンで優れており、オフラインメソッドよりも同等またはそれ以上の結果を示すことを示した。
論文 参考訳(メタデータ) (2023-12-10T17:07:37Z) - FLARE: Fast Learning of Animatable and Relightable Mesh Avatars [64.48254296523977]
私たちのゴールは、幾何学的に正確で、リアルで、楽しい、現在のレンダリングシステムと互換性のあるビデオから、パーソナライズ可能な3Dアバターを効率的に学習することです。
単眼ビデオからアニマタブルアバターとリライトブルアバターの作成を可能にする技術であるFLAREを紹介する。
論文 参考訳(メタデータ) (2023-10-26T16:13:00Z) - Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction [29.83056271799794]
暗黙の神経表現は、動的なシーンの再構築とレンダリングに対する新しいアプローチの道を開いた。
本稿では,3次元ガウシアンを用いてシーンを再構成し,標準空間で学習する,変形可能な3次元ガウシアンスプラッティング法を提案する。
微分ガウシアン化器により、変形可能な3Dガウシアンは高いレンダリング品質だけでなく、リアルタイムレンダリング速度も達成できる。
論文 参考訳(メタデータ) (2023-09-22T16:04:02Z) - A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware
Image Synthesis [163.96778522283967]
そこで本研究では,シェーディング誘導型生成暗黙モデルを提案する。
正確な3D形状は、異なる照明条件下でリアルなレンダリングをもたらす必要がある。
複数のデータセットに対する実験により,提案手法が光リアルな3次元画像合成を実現することを示す。
論文 参考訳(メタデータ) (2021-10-29T10:53:12Z) - Photorealism in Driving Simulations: Blending Generative Adversarial
Image Synthesis with Rendering [0.0]
我々は、運転シミュレーションの視覚的忠実度を改善するために、ハイブリッドな生成型ニューラルネットワークパイプラインを導入する。
テクスチャのない単純なオブジェクトモデルからなる3次元シーンから2次元のセマンティック画像を生成する。
これらのセマンティックイメージは、現実の運転シーンで訓練された最先端のジェネレーティブ・アドリア・ネットワーク(GAN)を用いて、フォトリアリスティックなRGBイメージに変換される。
論文 参考訳(メタデータ) (2020-07-31T03:25:17Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
合成3Dモデルからリアルな画像を生成するためのオートエンコーダを提案し,同時に実像を本質的な形状と外観特性に分解する。
実験により, レンダリングと分解の併用処理が有益であることが確認され, 画像から画像への翻訳の質的, 定量的なベースラインよりも優れた結果が得られた。
論文 参考訳(メタデータ) (2020-06-29T12:53:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。