論文の概要: Creating Your Editable 3D Photorealistic Avatar with Tetrahedron-constrained Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2504.20403v1
- Date: Tue, 29 Apr 2025 03:56:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.74099
- Title: Creating Your Editable 3D Photorealistic Avatar with Tetrahedron-constrained Gaussian Splatting
- Title(参考訳): 編集可能な3Dフォトリアリスティックアバター「Tetrahedron-Constrained Gaussian Splatting」
- Authors: Hanxi Liu, Yifang Men, Zhouhui Lian,
- Abstract要約: 編集過程を局所的な空間適応と現実的な外観学習に分離する枠組みを導入する。
このフレームワークは、四面体格子の制御可能な明示的構造と3次元ガウス格子の高精度レンダリング機能を組み合わせる。
定性的かつ定量的な実験は、フォトリアリスティックな3D編集可能なアバターの生成における我々のアプローチの有効性と優位性を示す。
- 参考スコア(独自算出の注目度): 17.908135908777325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized 3D avatar editing holds significant promise due to its user-friendliness and availability to applications such as AR/VR and virtual try-ons. Previous studies have explored the feasibility of 3D editing, but often struggle to generate visually pleasing results, possibly due to the unstable representation learning under mixed optimization of geometry and texture in complicated reconstructed scenarios. In this paper, we aim to provide an accessible solution for ordinary users to create their editable 3D avatars with precise region localization, geometric adaptability, and photorealistic renderings. To tackle this challenge, we introduce a meticulously designed framework that decouples the editing process into local spatial adaptation and realistic appearance learning, utilizing a hybrid Tetrahedron-constrained Gaussian Splatting (TetGS) as the underlying representation. TetGS combines the controllable explicit structure of tetrahedral grids with the high-precision rendering capabilities of 3D Gaussian Splatting and is optimized in a progressive manner comprising three stages: 3D avatar instantiation from real-world monocular videos to provide accurate priors for TetGS initialization; localized spatial adaptation with explicitly partitioned tetrahedrons to guide the redistribution of Gaussian kernels; and geometry-based appearance generation with a coarse-to-fine activation strategy. Both qualitative and quantitative experiments demonstrate the effectiveness and superiority of our approach in generating photorealistic 3D editable avatars.
- Abstract(参考訳): パーソナライズされた3Dアバター編集は、ユーザーフレンドリさとAR/VRやバーチャルトライオンのようなアプリケーションで利用できるため、大きな可能性を秘めている。
従来の研究では、複雑な再構成シナリオにおける幾何学とテクスチャの混合最適化による不安定な表現学習のために、3D編集の実現可能性について検討されてきた。
本稿では,通常のユーザが正確な領域ローカライゼーション,幾何学的適応性,フォトリアリスティックレンダリングを備えた編集可能な3Dアバターを作成するための,アクセス可能なソリューションを提供することを目的とする。
この課題に対処するために,我々は,編集プロセスを局所的な空間適応と現実的な外観学習に分離する,巧妙に設計されたフレームワークを導入する。
TetGSは、テトラヘドラル格子の制御可能な明示的な構造と3次元ガウス格子の高精度レンダリング機能を組み合わせることで、3つの段階からなるプログレッシブな方法で最適化されている。
定性的かつ定量的な実験は、フォトリアリスティックな3D編集可能なアバターの生成における我々のアプローチの有効性と優位性を示す。
関連論文リスト
- EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
既存のNeRFおよび3DGSベースの手法は、フォトリアリスティックレンダリングを実現する上で有望な結果を示すが、スローでシーンごとの最適化が必要である。
本稿では,都市景観を対象とした効率的な3次元ガウススプレイティングモデルEVolSplatを紹介する。
論文 参考訳(メタデータ) (2025-03-26T02:47:27Z) - DirectTriGS: Triplane-based Gaussian Splatting Field Representation for 3D Generation [37.09199962653554]
ガウススプラッティング(GS)を用いた3次元オブジェクト生成のための新しいフレームワークであるDirectTriGSを提案する。
提案した生成フレームワークは,テキスト・ツー・3Dタスクにおいて高品質な3Dオブジェクト形状とレンダリング結果を生成することができる。
論文 参考訳(メタデータ) (2025-03-10T04:05:38Z) - Generating Editable Head Avatars with 3D Gaussian GANs [57.51487984425395]
従来の3D-Aware Generative Adversarial Network (GAN) は、フォトリアリスティックでビューに一貫性のある3Dヘッド合成を実現する。
本稿では,3次元ガウススプラッティング(3DGS)を明示的な3次元表現として取り入れることで,3次元ヘッドアバターの編集性とアニメーション制御を向上する手法を提案する。
提案手法は,最先端の制御性を備えた高品質な3D認識合成を実現する。
論文 参考訳(メタデータ) (2024-12-26T10:10:03Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - 3D Gaussian Editing with A Single Image [19.662680524312027]
本稿では,3次元ガウシアンスプラッティングをベースとしたワンイメージ駆動の3Dシーン編集手法を提案する。
提案手法は,ユーザが指定した視点から描画した画像の編集版に合わせるために,3次元ガウスを最適化することを学ぶ。
実験により, 幾何学的詳細処理, 長距離変形, 非剛性変形処理における本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-14T13:17:42Z) - WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections [8.261637198675151]
制約のない写真コレクションからの新規ビュー合成(NVS)は、コンピュータグラフィックスでは困難である。
写真コレクションからのシーン再構築のための効率的なポイントベース微分可能レンダリングフレームワークを提案する。
提案手法は、新しいビューのレンダリング品質と、高収束・レンダリング速度の外観合成において、既存のアプローチよりも優れている。
論文 参考訳(メタデータ) (2024-06-04T15:17:37Z) - Hybrid Explicit Representation for Ultra-Realistic Head Avatars [55.829497543262214]
我々は,超現実的な頭部アバターを作成し,それをリアルタイムにレンダリングする新しい手法を提案する。
UVマップされた3Dメッシュは滑らかな表面のシャープでリッチなテクスチャを捉えるのに使われ、3Dガウス格子は複雑な幾何学構造を表現するために用いられる。
モデル化された結果が最先端のアプローチを上回る実験を行ないました。
論文 参考訳(メタデータ) (2024-03-18T04:01:26Z) - CG3D: Compositional Generation for Text-to-3D via Gaussian Splatting [57.14748263512924]
CG3Dは、スケーラブルな3Dアセットを合成的に生成する手法である。
ガンマ放射場は、オブジェクトの合成を可能にするためにパラメータ化され、意味的および物理的に一貫したシーンを可能にする能力を持っている。
論文 参考訳(メタデータ) (2023-11-29T18:55:38Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
フォトリアリスティック・ノベルビューを合成可能な高忠実度3次元生成対向ネットワーク(GAN)インバージョン・フレームワークを提案する。
提案手法は,1枚の画像から高忠実度3Dレンダリングを可能にし,AI生成3Dコンテンツの様々な応用に期待できる。
論文 参考訳(メタデータ) (2022-11-28T18:59:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。