Interpretability of Graph Neural Networks to Assess Effects of Global Change Drivers on Ecological Networks
- URL: http://arxiv.org/abs/2503.15107v2
- Date: Fri, 28 Mar 2025 20:08:35 GMT
- Title: Interpretability of Graph Neural Networks to Assess Effects of Global Change Drivers on Ecological Networks
- Authors: Emre Anakok, Pierre Barbillon, Colin Fontaine, Elisa Thebault,
- Abstract summary: Pollinators play a crucial role for plant reproduction, either in natural ecosystem or in human-modified landscape.<n>To assess the potential influence of global change drivers on pollination, large-scale interactions, climate and land use data are required.<n>Recent machine learning methods, such as graph neural networks (GNNs), allow the analysis of such datasets, but interpreting their results can be challenging.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pollinators play a crucial role for plant reproduction, either in natural ecosystem or in human-modified landscape. Global change drivers,including climate change or land use modifications, can alter the plant-pollinator interactions. To assess the potential influence of global change drivers on pollination, large-scale interactions, climate and land use data are required. While recent machine learning methods, such as graph neural networks (GNNs), allow the analysis of such datasets, interpreting their results can be challenging. We explore existing methods for interpreting GNNs in order to highlight the effects of various environmental covariates on pollination network connectivity. A large simulation study is performed to confirm whether these methods can detect the interactive effect between a covariate and a genus of plant on connectivity, and whether the application of debiasing techniques influences the estimation of these effects. An application on the Spipoll dataset, with and without accounting for sampling effects, highlights the potential impact of land use on network connectivity and shows that accounting for sampling effects partially alters the estimation of these effects.
Related papers
- SPARTAN: A Sparse Transformer Learning Local Causation [63.29645501232935]
Causal structures play a central role in world models that flexibly adapt to changes in the environment.
We present the SPARse TrANsformer World model (SPARTAN), a Transformer-based world model that learns local causal structures between entities in a scene.
By applying sparsity regularisation on the attention pattern between object-factored tokens, SPARTAN identifies sparse local causal models that accurately predict future object states.
arXiv Detail & Related papers (2024-11-11T11:42:48Z) - Network Causal Effect Estimation In Graphical Models Of Contagion And Latent Confounding [2.654975444537834]
Key question in many network studies is whether the observed correlations between units are primarily due to contagion or latent confounding.
We propose network causal effect estimation strategies that provide unbiased and consistent estimates.
We evaluate the effectiveness of our methods with synthetic data and the validity of our assumptions using real-world networks.
arXiv Detail & Related papers (2024-11-02T22:12:44Z) - Spatio-temporal Multivariate Cluster Evolution Analysis for Detecting and Tracking Climate Impacts [0.0]
This paper presents a novel and efficient unsupervised data-driven approach for detecting statistically-significant impacts.
We demonstrate that the proposed approach is capable of detecting known post-eruption impacts/events.
We additionally describe a methodology for extracting meaningful sequences of post-eruption impacts/events by using NLP.
arXiv Detail & Related papers (2024-10-21T22:13:09Z) - Estimating Peer Direct and Indirect Effects in Observational Network Data [16.006409149421515]
We propose a general setting which considers both peer direct effects and peer indirect effects, and the effect of an individual's own treatment.
We use attention mechanisms to distinguish the influences of different neighbors and explore high-order neighbor effects through graph neural networks.
Our theoretical findings have the potential to improve intervention strategies in networked systems, with applications in areas such as social networks and epidemiology.
arXiv Detail & Related papers (2024-08-21T10:02:05Z) - VegeDiff: Latent Diffusion Model for Geospatial Vegetation Forecasting [58.12667617617306]
We propose VegeDiff for the geospatial vegetation forecasting task.
VegeDiff is the first to employ a diffusion model to probabilistically capture the uncertainties in vegetation change processes.
By capturing the uncertainties in vegetation changes and modeling the complex influence of relevant variables, VegeDiff outperforms existing deterministic methods.
arXiv Detail & Related papers (2024-07-17T14:15:52Z) - Influence Maximization via Graph Neural Bandits [54.45552721334886]
We set the IM problem in a multi-round diffusion campaign, aiming to maximize the number of distinct users that are influenced.
We propose the framework IM-GNB (Influence Maximization with Graph Neural Bandits), where we provide an estimate of the users' probabilities of being influenced.
arXiv Detail & Related papers (2024-06-18T17:54:33Z) - Graph Machine Learning based Doubly Robust Estimator for Network Causal Effects [17.44202934049009]
We propose a novel methodology that combines graph machine learning approaches with the double machine learning framework.
We demonstrate our method is accurate, robust, and scalable via an extensive simulation study.
arXiv Detail & Related papers (2024-03-17T20:23:42Z) - Using interpretable boosting algorithms for modeling environmental and
agricultural data [0.0]
We describe how interpretable boosting algorithms can be used to analyze high-dimensional environmental data.
We show how group structures can be considered and how interactions can be found in high-dimensional datasets using a novel 2-step boosting approach.
arXiv Detail & Related papers (2023-05-04T10:16:11Z) - Towards assessing agricultural land suitability with causal machine
learning [0.0]
We use causal machine learning to estimate the effect of crop rotation and landscape crop diversity on Net Primary Productivity in the Flanders region of Belgium.
We find that the effect of crop rotation was insignificant, while landscape crop diversity had a small negative effect on NPP.
arXiv Detail & Related papers (2022-04-27T14:13:47Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - Masked Transformer for Neighhourhood-aware Click-Through Rate Prediction [74.52904110197004]
We propose Neighbor-Interaction based CTR prediction, which put this task into a Heterogeneous Information Network (HIN) setting.
In order to enhance the representation of the local neighbourhood, we consider four types of topological interaction among the nodes.
We conduct comprehensive experiments on two real world datasets and the experimental results show that our proposed method outperforms state-of-the-art CTR models significantly.
arXiv Detail & Related papers (2022-01-25T12:44:23Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
Causal discovery is at the core of human cognition.
We consider the task of causal discovery from videos in an end-to-end fashion without supervision on the ground-truth graph structure.
arXiv Detail & Related papers (2020-07-01T17:29:57Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
influence functions approximate the effect of samples in test-time predictions.
influence estimates are fairly accurate for shallow networks.
Hessian regularization is important to get highquality influence estimates.
arXiv Detail & Related papers (2020-06-25T18:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.