論文の概要: HQNN-FSP: A Hybrid Classical-Quantum Neural Network for Regression-Based Financial Stock Market Prediction
- arxiv url: http://arxiv.org/abs/2503.15403v1
- Date: Wed, 19 Mar 2025 16:44:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:24:25.943301
- Title: HQNN-FSP: A Hybrid Classical-Quantum Neural Network for Regression-Based Financial Stock Market Prediction
- Title(参考訳): HQNN-FSP - 回帰型金融市場予測のためのハイブリッド古典量子ニューラルネットワーク
- Authors: Prashant Kumar Choudhary, Nouhaila Innan, Muhammad Shafique, Rajeev Singh,
- Abstract要約: 本研究では、金融トレンド予測を支援するためのハイブリッド量子古典的アプローチの可能性について検討する。
独自の量子ニューラルネットワーク(QNN)レグレシタが導入された。
- 参考スコア(独自算出の注目度): 3.5418331252013897
- License:
- Abstract: Financial time-series forecasting remains a challenging task due to complex temporal dependencies and market fluctuations. This study explores the potential of hybrid quantum-classical approaches to assist in financial trend prediction by leveraging quantum resources for improved feature representation and learning. A custom Quantum Neural Network (QNN) regressor is introduced, designed with a novel ansatz tailored for financial applications. Two hybrid optimization strategies are proposed: (1) a sequential approach where classical recurrent models (RNN/LSTM) extract temporal dependencies before quantum processing, and (2) a joint learning framework that optimizes classical and quantum parameters simultaneously. Systematic evaluation using TimeSeriesSplit, k-fold cross-validation, and predictive error analysis highlights the ability of these hybrid models to integrate quantum computing into financial forecasting workflows. The findings demonstrate how quantum-assisted learning can contribute to financial modeling, offering insights into the practical role of quantum resources in time-series analysis.
- Abstract(参考訳): 金融時系列予測は、複雑な時間的依存と市場の変動のため、依然として困難な課題である。
本研究は, 特徴表現と学習の改善に量子資源を活用することで, 金融トレンド予測を支援するハイブリッド量子古典的手法の可能性を探るものである。
独自の量子ニューラルネットワーク(QNN)レグレシタが導入された。
1)古典的リカレントモデル(RNN/LSTM)が量子処理の前に時間的依存を抽出する逐次的アプローチと,(2)古典的パラメータと量子的パラメータを同時に最適化する共同学習フレームワークを提案する。
TimeSeriesSplit、k-foldクロスバリデーション、予測エラー分析を用いたシステム評価は、これらのハイブリッドモデルが量子コンピューティングを金融予測ワークフローに統合する能力を強調している。
この結果は、量子支援学習が金融モデリングにどのように貢献するかを示し、時系列分析における量子リソースの実践的役割についての洞察を提供する。
関連論文リスト
- Quantum Kernel-Based Long Short-term Memory for Climate Time-Series Forecasting [0.24739484546803336]
本稿では,量子カーネル法を従来のLSTMアーキテクチャに統合したQK-LSTM(Quantum Kernel-Based Long short-Memory)ネットワークを提案する。
QK-LSTMは、トレーニング可能なパラメータが少ない複雑な非線形依存と時間ダイナミクスをキャプチャする。
論文 参考訳(メタデータ) (2024-12-12T01:16:52Z) - Exploring Hybrid Quantum-Classical Methods for Practical Time-Series Forecasting [0.0]
戦略計画と資源配分には時系列予測が不可欠である。
時系列予測のための量子ベースの2つのアプローチについて検討する。
これら2つの手法の結果を比較して,実用的予測アプリケーションの有効性と潜在的優位性を評価する。
論文 参考訳(メタデータ) (2024-12-07T11:14:17Z) - Exploring Quantum Neural Networks for Demand Forecasting [0.25128687379089687]
本稿では,量子ニューラルネットワークを用いた需要予測モデルの学習手法を提案する。
従来のリカレントニューラルネットワークを用いて結果を比較した。
古典モデルと量子モデルの間にも同様の予測能力を示す。
論文 参考訳(メタデータ) (2024-10-19T13:01:31Z) - Quantum-Train with Tensor Network Mapping Model and Distributed Circuit Ansatz [0.8192907805418583]
量子トレイン(Quantum-Train、QT)は、量子古典機械学習のハイブリッドフレームワークである。
量子状態の測定を古典的なニューラルネットワークの重みにマッピングする。
従来のQTフレームワークでは、このタスクにマルチレイヤパーセプトロン(MLP)を採用しているが、スケーラビリティと解釈可能性に苦慮している。
複数の小さな量子処理ユニットノードを持つ大規模量子機械学習用に設計された分散回路アンサッツを提案する。
論文 参考訳(メタデータ) (2024-09-11T03:51:34Z) - Problem-informed Graphical Quantum Generative Learning [0.3914676152740143]
確率変数の共役確率分布を学習するための問題インフォームド量子回路Born Machine Ansatzを提案する。
モデルの性能を従来の設計と比較し,問題に依存しない回路よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-05-23T00:29:35Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Elastic Entangled Pair and Qubit Resource Management in Quantum Cloud
Computing [73.7522199491117]
量子クラウドコンピューティング(QCC)は、量子コンピューティングリソースを効率的に提供するための有望なアプローチを提供する。
ユーザ需要の変動と量子回路の要求は、効率的なリソース供給のために困難である。
本稿では、量子コンピューティングとネットワークリソースのプロビジョニングのためのリソース割り当てモデルを提案する。
論文 参考訳(メタデータ) (2023-07-25T00:38:46Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
量子回路ボルンマシン(QCBM)と量子生成逆ネットワーク(QGAN)の学習可能性について検討する。
まず、QCBMの一般化能力を解析し、量子デバイスがターゲット分布に直接アクセスできる際の優位性を同定する。
次に、QGANの一般化誤差境界が、採用されるAnsatz、クォーディットの数、入力状態に依存することを示す。
論文 参考訳(メタデータ) (2022-05-10T08:05:59Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。