論文の概要: From Training-Free to Adaptive: Empirical Insights into MLLMs' Understanding of Detection Information
- arxiv url: http://arxiv.org/abs/2401.17981v3
- Date: Thu, 19 Dec 2024 11:25:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:28:29.309172
- Title: From Training-Free to Adaptive: Empirical Insights into MLLMs' Understanding of Detection Information
- Title(参考訳): 学習自由から適応へ:MLLMにおける検出情報の理解に関する実証的考察
- Authors: Qirui Jiao, Daoyuan Chen, Yilun Huang, Yaliang Li, Ying Shen,
- Abstract要約: 視覚検出モデルは、きめ細かい画像の詳細を認識するのに優れている。
1つの効果的な戦略は、シンプルで効果的なテキスト形式で検出情報を注入することである。
本稿では,MLLMのテキスト検出情報に対する理解に,学習はどのような影響を与えるのか,という疑問に対処する。
- 参考スコア(独自算出の注目度): 32.57246173437492
- License:
- Abstract: Despite the impressive capabilities of Multimodal Large Language Models (MLLMs) in integrating text and image modalities, challenges remain in accurately interpreting detailed visual elements. Vision detection models excel at recognizing fine-grained image details, prompting researchers to use them to enhance MLLMs. One effective strategy is to infuse detection information in text format, which has proven simple and effective. However, most studies utilize this method without training, leaving the potential of adaptive training largely unexplored. Adaptive training could significantly enhance MLLMs' comprehension of unique inputs while filtering out irrelevant information. This paper addresses the crucial question: How does training impact MLLMs' understanding of infused textual detection information? We systematically experiment with various representative models to evaluate the effects of training-free, retraining, and fine-tuning strategies. We also examine the influence of training on MLLMs' original abilities and the interchangeability of detection models. Our findings indicate that fine-tuning a pre-trained MLLM to incorporate textual detection information delivers superior results compared to training-free and retraining methods, improving performance by 6.71% across 10 widely recognized benchmarks. Furthermore, fine-tuning enables MLLMs to retain performance enhancements even when detection models are swapped, indicating improved understanding of formatted textual data. We release our codes to support further exploration of fusion strategies for vision detection models and the enhancement of MLLMs' fine-grained multimodal capabilities.
- Abstract(参考訳): テキストと画像のモダリティの統合におけるMLLM(Multimodal Large Language Models)の印象的な機能にもかかわらず、詳細なビジュアル要素を正確に解釈することは困難である。
視覚検出モデルは微細な画像の詳細を認識するのに優れており、研究者はMLLMの強化にそれを使うように促している。
1つの効果的な戦略は、シンプルで効果的なテキスト形式で検出情報を注入することである。
しかし、ほとんどの研究では、この手法をトレーニングなしで利用しており、適応訓練の可能性はほとんど探索されていない。
アダプティブトレーニングはMLLMのユニークな入力の理解を著しく向上させ、無関係な情報をフィルタリングする。
本稿では,MLLMのテキスト検出情報に対する理解に,学習がどのような影響を及ぼすか,という重要な問題に対処する。
本研究では,学習自由度,リトレーニング,微調整戦略の効果を評価するために,様々な代表モデルを用いて体系的に実験を行った。
また,学習がMLLMの本来の能力と検出モデルの交換性に与える影響についても検討した。
その結果,テキスト検出情報を組み込むための事前学習MLLMの微調整が,トレーニング不要・再学習手法よりも優れた結果をもたらし,広く認識されている10のベンチマークで6.71%の性能向上が得られた。
さらに、微調整により、検出モデルがスワップされた場合でも、MLLMはパフォーマンスの向上を維持することができ、フォーマットされたテキストデータの理解が向上したことを示す。
我々は、視覚検出モデルのための融合戦略のさらなる探索と、MLLMの細粒度マルチモーダル機能の強化を支援するために、コードをリリースした。
関連論文リスト
- From Selection to Generation: A Survey of LLM-based Active Learning [153.8110509961261]
大きな言語モデル(LLM)は、全く新しいデータインスタンスを生成し、よりコスト効率の良いアノテーションを提供するために使われています。
本調査は,LSMに基づくAL手法の直感的な理解を目指して,研究者や実践者の最新のリソースとして機能することを目的としている。
論文 参考訳(メタデータ) (2025-02-17T12:58:17Z) - Visual RAG: Expanding MLLM visual knowledge without fine-tuning [5.341192792319891]
本稿では、文脈から学習するMLLMの機能と検索機構を相乗的に組み合わせたVisual RAGを紹介する。
このようにして、得られたシステムは、トレーニングデータから抽出した知識に限らず、微調整なしで、迅速かつ容易に更新できる。
モデル画像分類性能を改善するための計算コストを大幅に削減し、トレーニングされていない新しい視覚領域やタスクにモデル知識を拡大する。
論文 参考訳(メタデータ) (2025-01-18T17:43:05Z) - Enhancing Instruction-Following Capability of Visual-Language Models by Reducing Image Redundancy [37.471419716572086]
LLM(Large Language Model)とMLLM(Multimodal Large Language Model)の命令追従能力には大きなギャップがある。
本稿では,このギャップを軽減するために,VMTC(Visual-Modality Token Compression)とCMAI(Cross-Modality Attention Inhibition)戦略を提案する。
論文 参考訳(メタデータ) (2024-11-23T05:03:32Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models [73.34709921061928]
マルチモーダル大言語モデル(MLLM)に視覚的プロンプトを注入する学習自由手法を提案する。
我々は,エネルギー関数に基づいて学習可能な潜伏変数を最適化し,注目マップにおける参照領域の強度を高める。
提案手法は,参照能力のMLLMへの統合に有望な方向を与え,ボックス,マスク,スクリブル,ポイントによる参照を支援する。
論文 参考訳(メタデータ) (2024-07-31T11:40:29Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
本研究では,VALSEベンチマークを用いたマルチモーダル大規模言語モデル(MLLM)の性能評価を目的とした。
我々は,モデルサイズや事前学習データセットの異なる最先端MLLMの包括的評価を行った。
論文 参考訳(メタデータ) (2024-07-17T11:26:47Z) - How Does the Textual Information Affect the Retrieval of Multimodal In-Context Learning? [11.374310255084753]
本稿では,マルチモーダル・イン・コンテクスト学習効率を向上させるニューラルネットワークを用いたMLLM-Retriever MSIERを提案する。
このアプローチは3つの異なるタスクにわたる広範なテストを通じて検証され、メソッドの有効性が実証される。
この探索は、マルチモーダルデータの戦略的利用を通じてMLLMにおける洗練された文脈内学習の可能性を強調し、今後の進歩の道を開くものである。
論文 参考訳(メタデータ) (2024-04-19T13:05:37Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
本稿では,MLLMの視覚知覚能力を向上させるために,知識の混合強化機構を提案する。
本稿では,マルチタスクエンコーダとビジュアルツールを既存のMLLM訓練と推論パイプラインに組み込む新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T02:02:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。