論文の概要: OThink-MR1: Stimulating multimodal generalized reasoning capabilities through dynamic reinforcement learning
- arxiv url: http://arxiv.org/abs/2503.16081v1
- Date: Thu, 20 Mar 2025 12:22:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 15:30:52.390512
- Title: OThink-MR1: Stimulating multimodal generalized reasoning capabilities through dynamic reinforcement learning
- Title(参考訳): OThink-MR1:動的強化学習によるマルチモーダル一般化推論能力の活性化
- Authors: Zhiyuan Liu, Yuting Zhang, Feng Liu, Changwang Zhang, Ying Sun, Jun Wang,
- Abstract要約: 我々は,強化学習をマルチモーダル言語モデルに拡張するフレームワークであるOThink-MR1を紹介する。
マルチタスク評価において,RL性能を大幅に向上させる動的Kulback-Leibler戦略を設計する。
また、RLが卓越したクロスタスクの一般化能力を示しており、1つのマルチモーダルタスク上でRLで後トレーニングされたモデルが、他のタスクに効果的に転送可能であることを示す。
- 参考スコア(独自算出の注目度): 29.053899071144976
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Language Models have gained significant traction for their ability to process diverse input data types and generate coherent, contextually relevant outputs across various applications. While supervised fine-tuning (SFT) has been the predominant approach to enhance MLLM capabilities in task-specific optimization, it often falls short in fostering crucial generalized reasoning abilities. Despite the potential of reinforcement learning (RL) to address these limitations, it faces two issues: (1) its generalized capabilities in multimodal tasks remain underexplored. (2) its training constraints such as constant Kullback-Leibler or clamp strategy easily lead to suboptimal bottleneck. To adress these issues, we introduce OThink-MR1, a framework that extends RL to MLLMs, enabling them to achieve deeper understanding and reasoning across multimodal tasks. We design a dynamic Kullback-Leibler strategy that significantly enhances RL performance, surpassing SFT in same-task evaluations. Also, we are the first to reveal that RL exhibits remarkable cross-task generalization capabilities, which shows that models post-trained with RL on one multimodal task can be effectively transfered to another tasks. Finally, extensive experiments demonstrate the great reasoning ability of our proposed OThink-MR1.
- Abstract(参考訳): マルチモーダル言語モデルは、多様な入力データ型を処理し、様々なアプリケーションにまたがってコヒーレントでコンテキスト的に関連する出力を生成する能力によって、大きな牽引力を得てきた。
教師付き微調整(SFT)は、タスク固有の最適化においてMLLM能力を向上するための主要なアプローチであるが、しばしば重要な一般化推論能力の育成に不足する。
これらの制約に対処する強化学習(RL)の可能性にもかかわらず、(1)マルチモーダルタスクにおける一般化能力は未解明のままである。
2) 一定のKullback-Leiblerやクランプ戦略のようなトレーニング制約は、容易に最適以下のボトルネックにつながる。
これらの問題に対処するため,MLLMにRLを拡張するフレームワークであるOThink-MR1を導入し,マルチモーダルタスク間の深い理解と推論を実現する。
マルチタスク評価において,RL性能を大幅に向上させる動的Kulback-Leibler戦略を設計する。
また、RLが卓越したクロスタスクの一般化能力を示しており、1つのマルチモーダルタスク上でRLで後トレーニングされたモデルが、他のタスクに効果的に転送可能であることを示す。
最後に,提案したOThink-MR1の大きな推論能力を示す実験を行った。
関連論文リスト
- RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization [86.30192066451256]
大規模言語モデル(LLM)のための新しいハイブリッド政治最適化手法RL-PLUSを提案する。
RL-PLUSは、外部データと内部エクスプロイトを相乗化して、より強力な推論能力を達成し、ベースモデルのバウンダリを超える。
提案手法の優位性と一般化性を示すため,理論解析と広範な実験を行った。
論文 参考訳(メタデータ) (2025-07-31T23:55:29Z) - VL-Cogito: Progressive Curriculum Reinforcement Learning for Advanced Multimodal Reasoning [69.44871115752055]
本稿では,PCuRL(Progressive Curriculum Reinforcement Learning)フレームワークを用いて学習した高度なマルチモーダル推論モデルを提案する。
PCuRLは、難易度が徐々に増大するタスクを通じてモデルを体系的にガイドし、多様なマルチモーダルコンテキストにおける推論能力を大幅に向上させる。
本フレームワークは,(1)連続するRLトレーニング段階におけるトレーニング難度を動的に調整するオンライン難易度重み付け機構,(2)タスク複雑度に応じて推論経路長を適応的に調整する動的長報奨機構,の2つの重要なイノベーションを紹介する。
論文 参考訳(メタデータ) (2025-07-30T12:23:21Z) - Omni-Thinker: Scaling Cross-Domain Generalization in LLMs via Multi-Task RL with Hybrid Rewards [50.21528417884747]
Omni-Thinkerは多種多様なタスクにわたる大規模言語モデル(LLM)の性能を向上させる統合強化学習フレームワークである。
我々の手法はタスクタイプを一貫した最適化を可能にし、RLベースのトレーニングを主観的ドメインに拡張する。
4つの領域にまたがる実験の結果、カリキュラムの学習は、ジョイントトレーニングよりも5.2%、モデルマージより9.1%向上していることがわかった。
論文 参考訳(メタデータ) (2025-07-20T01:50:16Z) - WeThink: Toward General-purpose Vision-Language Reasoning via Reinforcement Learning [17.459985667824807]
DeepSeek-R1のようなテキストベースの推論モデルの成功に基づいて、これらの機能をマルチモーダル推論に拡張することは大きな約束である。
本稿では,強化学習を通じて汎用的な視覚言語推論を実現する方法について述べる。
論文 参考訳(メタデータ) (2025-06-09T16:20:54Z) - Advancing Multimodal Reasoning Capabilities of Multimodal Large Language Models via Visual Perception Reward [87.06604760273372]
本稿では,MLLMに視覚内容の正確な知覚を促す新しい視覚認識報酬を導入するPerception-R1を提案する。
本稿では,Perception-R1が1,442のトレーニングデータのみを用いて,ほとんどのベンチマークで最先端のパフォーマンスを実現することを示す。
論文 参考訳(メタデータ) (2025-06-08T16:48:42Z) - Reinforcement Fine-Tuning Powers Reasoning Capability of Multimodal Large Language Models [10.257917779370233]
強化微調整(RFT)は、大規模言語モデル(LLM)の推論能力を高める上で大きな可能性を示している。
本稿では,RFTがマルチモーダル大言語モデル (MLLM) の推論能力に影響を与えることを論じる。
論文 参考訳(メタデータ) (2025-05-24T06:01:48Z) - Reinforcing Multi-Turn Reasoning in LLM Agents via Turn-Level Credit Assignment [29.617927643991877]
本稿では,強化学習(RL)を用いた大規模言語モデル(LLM)エージェントの推論能力向上のためのアプローチを検討する。
マルチターンエージェントのインタラクションにおいて、より正確なクレジット割り当てを可能にするための、きめ細かいターンレベルの利点推定戦略を導入する。
本手法は,ツール実行における100%の成功と,正解マッチングにおける50%の精度を実現し,ベースラインを著しく上回る結果を得た。
論文 参考訳(メタデータ) (2025-05-17T04:09:46Z) - Reinforced MLLM: A Survey on RL-Based Reasoning in Multimodal Large Language Models [22.796496516709514]
本調査は,RLに基づく多モーダル大言語モデルの推論の最近の進歩を体系的にレビューする。
我々は、RLの2つの主要なパラダイム、--value-free と value-based method を強調し、RLが推論能力をどのように強化するかを分析する。
ベンチマークデータセット、評価プロトコル、既存の制限について概観する。
論文 参考訳(メタデータ) (2025-04-30T03:14:28Z) - SRPO: A Cross-Domain Implementation of Large-Scale Reinforcement Learning on LLM [18.275547804539016]
Two-Staged History-Resampling Policy 最適化は AIME24 と LiveCodeBench ベンチマークにおける DeepSeek-R1-Zero-32B のパフォーマンスを上回る。
本研究では,(1)数学的推論と符号化能力の両立を図った2段階のクロスドメイン・トレーニングパラダイム,(2)非効率なサンプルに対処する手法であるヒストリ・サンプリング(HR)を紹介する。
論文 参考訳(メタデータ) (2025-04-19T13:06:03Z) - LMM-R1: Empowering 3B LMMs with Strong Reasoning Abilities Through Two-Stage Rule-Based RL [32.67667242745463]
規則に基づく多モーダル推論のための2段階のフレームワークをtextbfFoundational Reasoning Enhancement (FRE) と textbfMultimodal Generalization Training (MGT) で提案する。
Qwen2.5-VL-Instruct-3Bの実験では、LMM-R1はマルチモーダルとテキストのみのベンチマークでそれぞれ平均4.83%、平均4.5%向上し、複雑なフットボールゲームでは3.63%向上した。
論文 参考訳(メタデータ) (2025-03-10T17:04:14Z) - MM-Eureka: Exploring Visual Aha Moment with Rule-based Large-scale Reinforcement Learning [56.97799347091435]
本稿では,大規模ルールベース強化学習(RL)をマルチモーダル推論に拡張したマルチモーダル推論モデルMM-Eurekaを提案する。
本研究は,マルチモーダル空間におけるDeepSeek-R1のようなテキストベースのRLシステムのキー特性を再現する。
命令調整モデルと事前学習モデルの両方が、教師付き微調整なしでルールベースRLにより強力なマルチモーダル推論能力を実現できることを示す。
論文 参考訳(メタデータ) (2025-03-10T14:23:12Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcherは、大規模言語モデルの検索能力を高めるために設計された、2段階の結果に基づく新しいRLアプローチである。
本フレームワークは, コールドスタート時に, プロセス報酬や蒸留を必要とせず, RLのみに依存している。
提案手法は, クローズドソースGPT-4o-miniと比較して, 従来の強力なRAG法よりも有意に優れていた。
論文 参考訳(メタデータ) (2025-03-07T17:14:44Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
大規模言語モデル(LLM)は、様々な領域にまたがる顕著な推論能力を示している。
近年の研究では、テスト時間計算の増加はLLMの推論能力を高めることが示されている。
そこで我々は,1)COAT推論形式を内部化するための小規模な形式調整段階,2)強化学習を活用した大規模自己改善段階を提案する。
論文 参考訳(メタデータ) (2025-02-04T17:26:58Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
多段階多モーダル推論タスクは、大規模言語モデル(MLLM)に重大な課題をもたらす
本稿では,MLLMの推論能力の向上を目的とした汎用フレームワークAR-MCTSを提案する。
我々は,AR-MCTSがサンプリングの多様性と精度を最適化し,信頼性の高いマルチモーダル推論を実現することを示す。
論文 参考訳(メタデータ) (2024-12-19T13:25:39Z) - Insight-V: Exploring Long-Chain Visual Reasoning with Multimodal Large Language Models [64.1799100754406]
大きな言語モデル(LLM)は、さらなる推論によって拡張された能力と信頼性を示す。
LLM推論の改善へのさまざまな取り組みにもかかわらず、高品質な長鎖推論データと最適化されたトレーニングパイプラインは、まだビジョン言語タスクでは不十分である。
本稿では,1)複雑なマルチモーダルタスクに対する長大かつ堅牢な推論データを生成するための初期の取り組みであるInsight-Vと,2)MLLMの推論能力を高めるための効果的なトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2024-11-21T18:59:55Z) - Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization [65.64108848398696]
我々は、MLLMのマルチモーダル推論能力を高めるために、選好最適化(PO)プロセスを導入する。
具体的には、自動選好データ構築パイプラインを設計し、高品質で大規模なマルチモーダル推論選好データセットであるMMPRを作成する。
マルチモーダルCoT性能を向上するMPO(Mixed Preference Optimization)と呼ばれるシンプルな手法を開発した。
論文 参考訳(メタデータ) (2024-11-15T18:59:27Z) - On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
マルチモーダル学習は、異なるモーダルからの情報を統合することでモデル性能を向上させることが期待されている。
広く使われている共同トレーニング戦略は、不均衡で最適化されていないユニモーダル表現につながる。
そこで本研究では,OGM(On-the-fly Prediction Modulation)とOGM(On-the-fly Gradient Modulation)の戦略を提案する。
論文 参考訳(メタデータ) (2024-10-15T13:15:50Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
大規模言語モデル(LLM)は、最近、強力な汎用ツールとして登場した。
本稿では,従来の行動分布としてLLMを扱い,それらをRLフレームワークに統合することを提案する。
LLMに基づくアクションの事前処理を取り入れることで、探索と複雑性の最適化が大幅に削減されることを示す。
論文 参考訳(メタデータ) (2024-10-10T13:54:11Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
大規模言語モデル(LLM)はマルチメディアアプリケーションで複数のタスクを実行する上で大きな可能性を証明している。
MoEは、効率的なタスクデカップリングのためのスパースアーキテクチャによる有望なソリューションとして登場した。
Intuition-MoR1Eは14のパブリックデータセットで優れた効率と2.15%の全体的な精度向上を実現している。
論文 参考訳(メタデータ) (2024-04-13T12:14:58Z) - M2CURL: Sample-Efficient Multimodal Reinforcement Learning via Self-Supervised Representation Learning for Robotic Manipulation [0.7564784873669823]
マルチモーダルコントラスト非教師強化学習(M2CURL)を提案する。
提案手法は,効率的な表現を学習し,RLアルゴリズムの高速収束に寄与する,新しいマルチモーダル自己教師学習技術を用いている。
Tactile Gym 2シミュレータ上でのM2CURLの評価を行い、異なる操作タスクにおける学習効率を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-01-30T14:09:35Z) - Retrieval-augmented Multi-modal Chain-of-Thoughts Reasoning for Large
Language Models [56.256069117502385]
Chain of Thought (CoT)アプローチは、複雑な推論タスクにおいて、LLM(Large Language Models)の能力を高めるために使用できる。
しかし、マルチモーダル推論における最適なCoT実例の選択は、まだ検討されていない。
本稿では,この課題に対処する新しい手法として,検索機構を用いて実演例を自動的に選択する手法を提案する。
論文 参考訳(メタデータ) (2023-12-04T08:07:21Z) - Effective Multimodal Reinforcement Learning with Modality Alignment and
Importance Enhancement [41.657470314421204]
異質性や異なるモダリティのダイナミックな重要性のため、強化学習を通じてエージェントを訓練することは困難である。
本稿では,その類似性と重要度に応じて,多モーダルアライメントと重要度向上を実現する,新しいマルチモーダルRL手法を提案する。
我々は,複数のマルチモーダルRLドメインに対するアプローチを検証し,学習速度と政策品質の点で最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-02-18T12:35:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。