論文の概要: Position: Beyond Assistance -- Reimagining LLMs as Ethical and Adaptive Co-Creators in Mental Health Care
- arxiv url: http://arxiv.org/abs/2503.16456v1
- Date: Fri, 21 Feb 2025 21:41:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-30 23:11:29.439584
- Title: Position: Beyond Assistance -- Reimagining LLMs as Ethical and Adaptive Co-Creators in Mental Health Care
- Title(参考訳): 精神保健におけるLCMの倫理的・適応的コクレーターとしての位置づけ
- Authors: Abeer Badawi, Md Tahmid Rahman Laskar, Jimmy Xiangji Huang, Shaina Raza, Elham Dolatabadi,
- Abstract要約: このポジションペーパーは、大規模言語モデル(LLM)がメンタルヘルスドメインにどのように統合されるか、という変化を論じている。
我々は、単なる補助ツールではなく、共同創造者としての役割を主張する。
- 参考スコア(独自算出の注目度): 9.30684296057698
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This position paper argues for a fundamental shift in how Large Language Models (LLMs) are integrated into the mental health care domain. We advocate for their role as co-creators rather than mere assistive tools. While LLMs have the potential to enhance accessibility, personalization, and crisis intervention, their adoption remains limited due to concerns about bias, evaluation, over-reliance, dehumanization, and regulatory uncertainties. To address these challenges, we propose two structured pathways: SAFE-i (Supportive, Adaptive, Fair, and Ethical Implementation) Guidelines for ethical and responsible deployment, and HAAS-e (Human-AI Alignment and Safety Evaluation) Framework for multidimensional, human-centered assessment. SAFE-i provides a blueprint for data governance, adaptive model engineering, and real-world integration, ensuring LLMs align with clinical and ethical standards. HAAS-e introduces evaluation metrics that go beyond technical accuracy to measure trustworthiness, empathy, cultural sensitivity, and actionability. We call for the adoption of these structured approaches to establish a responsible and scalable model for LLM-driven mental health support, ensuring that AI complements-rather than replaces-human expertise.
- Abstract(参考訳): このポジションペーパーは、大規模言語モデル(LLM)がメンタルヘルス領域にどのように統合されるかの根本的な変化を論じている。
我々は、単なる補助ツールではなく、共同創造者としての役割を主張する。
LLMはアクセシビリティ、パーソナライゼーション、危機介入を強化する可能性があるが、バイアス、評価、過度な信頼性、非人間化、規制の不確実性といった懸念から、採用は制限されている。
これらの課題に対処するために、倫理的かつ責任ある展開のためのSAFE-i(supportive, Adaptive, Fair, Ethical implementation)ガイドラインと、多次元・人間中心評価のためのHAAS-e(Human-AI Alignment and Safety Evaluation)フレームワークを提案する。
SAFE-iは、データガバナンス、アダプティブモデルエンジニアリング、および実世界の統合のための青写真を提供し、LSMが臨床および倫理基準に適合することを保証する。
HAAS-eは、信頼性、共感、文化的感受性、行動可能性を測定するために、技術的正確性を超えた評価指標を導入している。
私たちは、LLM駆動のメンタルヘルスサポートのための責任あるスケーラブルなモデルを確立するために、これらの構造化アプローチを採用することを求めます。
関連論文リスト
- Med-CoDE: Medical Critique based Disagreement Evaluation Framework [72.42301910238861]
医学的文脈における大きな言語モデル(LLM)の信頼性と精度は依然として重要な懸念点である。
現在の評価手法はロバスト性に欠けることが多く、LLMの性能を総合的に評価することができない。
我々は,これらの課題に対処するために,医療用LCMの特別設計評価フレームワークであるMed-CoDEを提案する。
論文 参考訳(メタデータ) (2025-04-21T16:51:11Z) - The challenge of uncertainty quantification of large language models in medicine [0.0]
本研究では,医学応用のための大規模言語モデル(LLM)の不確実性定量化について検討する。
私たちの研究は、不確実性を障壁としてではなく、AI設計に対する動的で反射的なアプローチを招待する知識の不可欠な部分として捉えています。
論文 参考訳(メタデータ) (2025-04-07T17:24:11Z) - Harnessing Large Language Models for Mental Health: Opportunities, Challenges, and Ethical Considerations [3.0655356440262334]
大規模言語モデル(LLM)は、メンタルヘルスの専門家にリアルタイムサポート、データ統合の改善、ケアを探す行動を促進する能力を促進するAI駆動のツールである。
しかし、その実装には重大な課題と倫理的な懸念が伴う。
本稿では,精神保健におけるLLMの変容の可能性について検討し,関連する技術的・倫理的複雑さを強調し,協調的・多分野的なアプローチを提唱する。
論文 参考訳(メタデータ) (2024-12-13T13:18:51Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - Beyond One-Time Validation: A Framework for Adaptive Validation of Prognostic and Diagnostic AI-based Medical Devices [55.319842359034546]
既存のアプローチは、これらのデバイスを実際にデプロイする際の複雑さに対処するのに不足することが多い。
提示されたフレームワークは、デプロイメント中に検証と微調整を繰り返すことの重要性を強調している。
現在の米国とEUの規制分野に位置づけられている。
論文 参考訳(メタデータ) (2024-09-07T11:13:52Z) - A Conceptual Framework for Ethical Evaluation of Machine Learning Systems [12.887834116390358]
倫理的意味は、機械学習システムの評価を設計する際に現れる。
本稿では,倫理的評価における重要なトレードオフを,潜在的な倫理的害に対する情報ゲインのバランスとして特徴付けるユーティリティ・フレームワークを提案する。
我々の分析は、倫理的な複雑さを意図的に評価し、管理する開発チームにとって重要な必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-08-05T01:06:49Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - Towards Automatic Evaluation for LLMs' Clinical Capabilities: Metric, Data, and Algorithm [15.627870862369784]
大規模言語モデル (LLMs) は, 臨床診断の効率向上への関心が高まっている。
臨床サービス提供におけるLCMの能力を評価するための自動評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-03-25T06:17:54Z) - The Ethics of Interaction: Mitigating Security Threats in LLMs [1.407080246204282]
この論文は、社会や個人のプライバシに対するこのようなセキュリティ上の脅威に対する、倫理的な悪影響について論じている。
われわれは、プロンプト注入、ジェイルブレイク、個人識別情報(PII)露出、性的に明示的なコンテンツ、ヘイトベースのコンテンツという5つの主要な脅威を精査し、彼らの批判的な倫理的結果と、彼らが堅牢な戦略戦略のために作り出した緊急性を評価する。
論文 参考訳(メタデータ) (2024-01-22T17:11:37Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。