Position: Beyond Assistance -- Reimagining LLMs as Ethical and Adaptive Co-Creators in Mental Health Care
- URL: http://arxiv.org/abs/2503.16456v1
- Date: Fri, 21 Feb 2025 21:41:20 GMT
- Title: Position: Beyond Assistance -- Reimagining LLMs as Ethical and Adaptive Co-Creators in Mental Health Care
- Authors: Abeer Badawi, Md Tahmid Rahman Laskar, Jimmy Xiangji Huang, Shaina Raza, Elham Dolatabadi,
- Abstract summary: This position paper argues for a shift in how Large Language Models (LLMs) are integrated into the mental health care domain.<n>We advocate for their role as co-creators rather than mere assistive tools.
- Score: 9.30684296057698
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This position paper argues for a fundamental shift in how Large Language Models (LLMs) are integrated into the mental health care domain. We advocate for their role as co-creators rather than mere assistive tools. While LLMs have the potential to enhance accessibility, personalization, and crisis intervention, their adoption remains limited due to concerns about bias, evaluation, over-reliance, dehumanization, and regulatory uncertainties. To address these challenges, we propose two structured pathways: SAFE-i (Supportive, Adaptive, Fair, and Ethical Implementation) Guidelines for ethical and responsible deployment, and HAAS-e (Human-AI Alignment and Safety Evaluation) Framework for multidimensional, human-centered assessment. SAFE-i provides a blueprint for data governance, adaptive model engineering, and real-world integration, ensuring LLMs align with clinical and ethical standards. HAAS-e introduces evaluation metrics that go beyond technical accuracy to measure trustworthiness, empathy, cultural sensitivity, and actionability. We call for the adoption of these structured approaches to establish a responsible and scalable model for LLM-driven mental health support, ensuring that AI complements-rather than replaces-human expertise.
Related papers
- Med-CoDE: Medical Critique based Disagreement Evaluation Framework [72.42301910238861]
The reliability and accuracy of large language models (LLMs) in medical contexts remain critical concerns.
Current evaluation methods often lack robustness and fail to provide a comprehensive assessment of LLM performance.
We propose Med-CoDE, a specifically designed evaluation framework for medical LLMs to address these challenges.
arXiv Detail & Related papers (2025-04-21T16:51:11Z) - The challenge of uncertainty quantification of large language models in medicine [0.0]
This study investigates uncertainty quantification in large language models (LLMs) for medical applications.
Our research frames uncertainty not as a barrier but as an essential part of knowledge that invites a dynamic and reflective approach to AI design.
arXiv Detail & Related papers (2025-04-07T17:24:11Z) - Harnessing Large Language Models for Mental Health: Opportunities, Challenges, and Ethical Considerations [3.0655356440262334]
Large Language Models (LLMs) are AI-driven tools that empower mental health professionals with real-time support, improved data integration, and the ability to encourage care-seeking behaviors.<n>However, their implementation comes with significant challenges and ethical concerns.<n>This paper examines the transformative potential of LLMs in mental health care, highlights the associated technical and ethical complexities, and advocates for a collaborative, multidisciplinary approach.
arXiv Detail & Related papers (2024-12-13T13:18:51Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - Beyond One-Time Validation: A Framework for Adaptive Validation of Prognostic and Diagnostic AI-based Medical Devices [55.319842359034546]
Existing approaches often fall short in addressing the complexity of practically deploying these devices.
The presented framework emphasizes the importance of repeating validation and fine-tuning during deployment.
It is positioned within the current US and EU regulatory landscapes.
arXiv Detail & Related papers (2024-09-07T11:13:52Z) - A Conceptual Framework for Ethical Evaluation of Machine Learning Systems [12.887834116390358]
Ethical implications appear when designing evaluations of machine learning systems.
We present a utility framework, characterizing the key trade-off in ethical evaluation as balancing information gain against potential ethical harms.
Our analysis underscores the critical need for development teams to deliberately assess and manage ethical complexities.
arXiv Detail & Related papers (2024-08-05T01:06:49Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
Large language models (LLMs) are revolutionizing the landscapes of finance, healthcare, and law.
We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies.
We critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems.
arXiv Detail & Related papers (2024-05-02T22:43:02Z) - Towards Automatic Evaluation for LLMs' Clinical Capabilities: Metric, Data, and Algorithm [15.627870862369784]
Large language models (LLMs) are gaining increasing interests to improve clinical efficiency for medical diagnosis.
We propose an automatic evaluation paradigm tailored to assess the LLMs' capabilities in delivering clinical services.
arXiv Detail & Related papers (2024-03-25T06:17:54Z) - The Ethics of Interaction: Mitigating Security Threats in LLMs [1.407080246204282]
The paper delves into the nuanced ethical repercussions of such security threats on society and individual privacy.
We scrutinize five major threats--prompt injection, jailbreaking, Personal Identifiable Information (PII) exposure, sexually explicit content, and hate-based content--to assess their critical ethical consequences and the urgency they create for robust defensive strategies.
arXiv Detail & Related papers (2024-01-22T17:11:37Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.