論文の概要: Comprehensive Review of Reinforcement Learning for Medical Ultrasound Imaging
- arxiv url: http://arxiv.org/abs/2503.16543v1
- Date: Wed, 19 Mar 2025 03:22:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:55:46.861605
- Title: Comprehensive Review of Reinforcement Learning for Medical Ultrasound Imaging
- Title(参考訳): 医用超音波画像における強化学習の概観
- Authors: Hanae Elmekki, Saidul Islam, Ahmed Alagha, Hani Sami, Amanda Spilkin, Ehsan Zakeri, Antonela Mariel Zanuttini, Jamal Bentahar, Lyes Kadem, Wen-Fang Xie, Philippe Pibarot, Rabeb Mizouni, Hadi Otrok, Shakti Singh, Azzam Mourad,
- Abstract要約: この研究は、米国の自律型ソリューション構築におけるRLの可能性を強調し、現在の研究成果の徹底的なレビューを提供することを目的としている。
米国スキャン領域の進歩に関する既存の調査は、主にAIを活用する部分的な自律的なソリューションに焦点を当てている。
このギャップを埋めるために、米国プロセスの段階をRL開発パイプラインに統合する包括的な分類法を提案する。
- 参考スコア(独自算出の注目度): 15.38820664844588
- License:
- Abstract: Medical Ultrasound (US) imaging has seen increasing demands over the past years, becoming one of the most preferred imaging modalities in clinical practice due to its affordability, portability, and real-time capabilities. However, it faces several challenges that limit its applicability, such as operator dependency, variability in interpretation, and limited resolution, which are amplified by the low availability of trained experts. This calls for the need of autonomous systems that are capable of reducing the dependency on humans for increased efficiency and throughput. Reinforcement Learning (RL) comes as a rapidly advancing field under Artificial Intelligence (AI) that allows the development of autonomous and intelligent agents that are capable of executing complex tasks through rewarded interactions with their environments. Existing surveys on advancements in the US scanning domain predominantly focus on partially autonomous solutions leveraging AI for scanning guidance, organ identification, plane recognition, and diagnosis. However, none of these surveys explore the intersection between the stages of the US process and the recent advancements in RL solutions. To bridge this gap, this review proposes a comprehensive taxonomy that integrates the stages of the US process with the RL development pipeline. This taxonomy not only highlights recent RL advancements in the US domain but also identifies unresolved challenges crucial for achieving fully autonomous US systems. This work aims to offer a thorough review of current research efforts, highlighting the potential of RL in building autonomous US solutions while identifying limitations and opportunities for further advancements in this field.
- Abstract(参考訳): 医用超音波(US)イメージングは、ここ数年で需要が増加しており、その可利用性、可搬性、リアルタイム能力により、臨床実践において最も好まれる画像モダリティの1つとなっている。
しかし、オペレータ依存性、解釈の多様性、限定的な解決など、適用性を制限するいくつかの課題に直面しており、これは訓練された専門家の可用性の低下によって増幅されている。
これにより、効率とスループットを向上させるために人間への依存を減らすことができる自律システムの必要性が求められます。
強化学習(Reinforcement Learning, RL)は、AI(Artificial Intelligence)の下で急速に進歩している分野であり、環境との報酬のあるインタラクションを通じて複雑なタスクを実行できる自律的でインテリジェントなエージェントの開発を可能にする。
米国スキャン領域の進歩に関する既存の調査は、主に、スキャンガイダンス、臓器の識別、平面認識、診断にAIを活用する部分的な自律的なソリューションに焦点を当てている。
しかし、これらの調査はいずれも、米国のプロセスの段階と最近のRLソリューションの進歩の間の交差点を探索するものではない。
このギャップを埋めるために、米国プロセスの段階をRL開発パイプラインに統合する包括的な分類法を提案する。
この分類は、米国の領域における最近のRLの進歩を浮き彫りにしているだけでなく、完全に自律的な米国のシステムを達成する上で不可欠な未解決の課題も特定している。
本研究は、米国の自律型ソリューション構築におけるRLの可能性を強調し、この分野におけるさらなる進歩の限界と機会を特定することを目的としている。
関連論文リスト
- Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
本稿では,医療用AIエージェントのバックボーンLSMの選択について検討する。
我々の研究結果は、o1の診断精度と一貫性を高める能力を示し、よりスマートでより応答性の高いAIツールへの道を開いた。
論文 参考訳(メタデータ) (2024-11-16T18:19:53Z) - Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
遺伝性網膜疾患(英: InheritedRetinal disease、IRD)は、進行性視力低下を引き起こす多様な遺伝性疾患群であり、労働年齢層の視覚障害の主要な原因である。
人工知能(AI)の最近の進歩は、これらの課題に対する有望な解決策を提供する。
このレビューは既存の研究を統合し、ギャップを特定し、IRDの診断と管理におけるAIの可能性の概要を提供する。
論文 参考訳(メタデータ) (2024-10-10T03:14:51Z) - Development of a Large Language Model-based Multi-Agent Clinical Decision Support System for Korean Triage and Acuity Scale (KTAS)-Based Triage and Treatment Planning in Emergency Departments [0.0]
本研究は, 患者トリアージ, 治療計画, 救急管理全般において, LLM駆動型CDSSを用いて, ED医師や看護師を支援することを目的とするものである。
このシステムは、Triage Nuurse、救急医、薬剤師、EDコーディネーターの4つのAIエージェントで構成されている。
トリアージアセスメントにはKTAS(Korea Triage and Acuity Scale)が組み込まれ、医薬品管理にはRxNorm APIが組み込まれている。
論文 参考訳(メタデータ) (2024-08-14T13:03:41Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - A Conceptual Algorithm for Applying Ethical Principles of AI to Medical Practice [5.005928809654619]
AIを利用するツールは、複数のドメインにまたがる専門家レベルのパフォーマンスに、ますます一致するか、超えている。
これらのシステムは、人口、人種、社会経済の境界を越えたケア提供の格差を減らすことを約束している。
このようなAIツールの民主化は、ケアコストを削減し、リソース割り当てを最適化し、ケアの質を向上させる。
論文 参考訳(メタデータ) (2023-04-23T04:14:18Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Current State of Community-Driven Radiological AI Deployment in Medical
Imaging [1.474525456020066]
本報告は, MonAIコンソーシアムの業界専門家と臨床医のグループによる, 週ごとの議論と問題解決経験について述べる。
実験室におけるAIモデル開発とその後の臨床展開の障壁を明らかにする。
臨床放射線学ワークフローにおける様々なAI統合ポイントについて論じる。
論文 参考訳(メタデータ) (2022-12-29T05:17:59Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - Unbox the Black-box for the Medical Explainable AI via Multi-modal and
Multi-centre Data Fusion: A Mini-Review, Two Showcases and Beyond [3.4031539425106683]
説明可能な人工知能(XAI)は、AIシステムのブラックボックスの選択方法のアンボックスを目的とした、機械学習の新たな研究トピックである。
機械学習アルゴリズムの多くは、意思決定の方法と理由を明らかにしない。
XAIは、ディープラーニングを利用したアプリケーション、特に医学や医療研究において、ますます重要になっている。
論文 参考訳(メタデータ) (2021-02-03T10:56:58Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。