論文の概要: A-IDE : Agent-Integrated Denoising Experts
- arxiv url: http://arxiv.org/abs/2503.16780v1
- Date: Fri, 21 Mar 2025 01:26:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:57:00.007069
- Title: A-IDE : Agent-Integrated Denoising Experts
- Title(参考訳): A-IDE : エージェント・インテグレート・デノナイジング・エキスパート
- Authors: Uihyun Cho, Namhun Kim,
- Abstract要約: textbfAgent-Integrated Denoising Experts (A-IDE) フレームワークを導入し、3つの解剖学的領域特定RED-CNNモデルを統合する。
A-IDEは、RMSE、PSNR、SSIMにおいて単一の統一デノイザに比べて優れた性能を発揮する。
- 参考スコア(独自算出の注目度): 0.46040036610482665
- License:
- Abstract: Recent advances in deep-learning based denoising methods have improved Low-Dose CT image quality. However, due to distinct HU distributions and diverse anatomical characteristics, a single model often struggles to generalize across multiple anatomies. To address this limitation, we introduce \textbf{Agent-Integrated Denoising Experts (A-IDE)} framework, which integrates three anatomical region-specialized RED-CNN models under the management of decision-making LLM agent. The agent analyzes semantic cues from BiomedCLIP to dynamically route incoming LDCT scans to the most appropriate expert model. We highlight three major advantages of our approach. A-IDE excels in heterogeneous, data-scarce environments. The framework automatically prevents overfitting by distributing tasks among multiple experts. Finally, our LLM-driven agentic pipeline eliminates the need for manual interventions. Experimental evaluations on the Mayo-2016 dataset confirm that A-IDE achieves superior performance in RMSE, PSNR, and SSIM compared to a single unified denoiser.
- Abstract(参考訳): 近年のディープラーニングに基づく denoising 法の進歩により,低線量CT画像の画質が向上した。
しかし、異なるHU分布と多様な解剖学的特徴のため、単一のモデルは複数の解剖学にまたがる一般化に苦慮することが多い。
この制限に対処するために、意思決定 LLM エージェントの管理の下で、3つの解剖学的領域特化RED-CNN モデルを統合した \textbf{Agent-Integrated Denoising Experts (A-IDE) フレームワークを導入する。
エージェントは、BiomedCLIPからのセマンティックキューを分析し、LDCTスキャンを最も適切な専門家モデルに動的にルーティングする。
このアプローチの3つの大きな利点を強調します。
A-IDEは異質でデータスカースな環境では優れています。
このフレームワークは、複数の専門家にタスクを分散することで、自動的にオーバーフィッティングを防ぐ。
最後に、LLM駆動のエージェントパイプラインは手作業による介入を不要にします。
Mayo-2016データセットの実験的評価により、A-IDEはRMSE、PSNR、SSIMにおいて単一統合デノイザに比べて優れた性能を達成できることを確認した。
関連論文リスト
- KA$^2$ER: Knowledge Adaptive Amalgamation of ExpeRts for Medical Images Segmentation [5.807887214293438]
本稿では,多元的基礎モデルを学習し,複数のエキスパートモデルの協調的な目標に対処することを目的としたアダプティブ・アマルガメーション・ナレッジ・フレームワークを提案する。
特に、まず、各タスクに対してnnUNetベースのエキスパートモデルをトレーニングし、トレーニング済みのSwinUNTERをターゲット基盤モデルとして再利用する。
隠蔽層内の階層的アテンション機構は、すべての専門家の隠蔽層の特徴知識にターゲットモデルの適応的なマージを実現するように設計されている。
論文 参考訳(メタデータ) (2024-10-28T14:49:17Z) - LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
知識分解」は、特定の医療課題のパフォーマンス向上を目的としている。
我々はLow-Rank Knowledge Decomposition(LoRKD)という新しいフレームワークを提案する。
LoRKDは、低ランクのエキスパートモジュールと効率的な知識分離畳み込みを組み込むことで、グラデーションを異なるタスクから明確に分離する。
論文 参考訳(メタデータ) (2024-09-29T03:56:21Z) - Towards Synergistic Deep Learning Models for Volumetric Cirrhotic Liver Segmentation in MRIs [1.5228650878164722]
世界的死亡の主な原因である肝硬変は、効果的な疾患モニタリングと治療計画のためにROIを正確に区分する必要がある。
既存のセグメンテーションモデルは、複雑な機能インタラクションをキャプチャして、さまざまなデータセットをまたいだ一般化に失敗することが多い。
本稿では、補間潜在空間を拡張的特徴相互作用モデリングに活用する新しい相乗論的理論を提案する。
論文 参考訳(メタデータ) (2024-08-08T14:41:32Z) - Inter-slice Super-resolution of Magnetic Resonance Images by Pre-training and Self-supervised Fine-tuning [49.197385954021456]
臨床実践では、2次元磁気共鳴(MR)シーケンスが広く採用されている。個々の2次元スライスを積み重ねて3次元ボリュームを形成できるが、比較的大きなスライスススペーシングは可視化とその後の解析タスクに課題をもたらす可能性がある。
スライス間隔を低減するため,ディープラーニングに基づく超解像技術が広く研究されている。
現在のほとんどのソリューションは、教師付きトレーニングのために、かなりの数の高解像度と低解像度の画像を必要とするが、通常は現実のシナリオでは利用できない。
論文 参考訳(メタデータ) (2024-06-10T02:20:26Z) - SynergyNet: Bridging the Gap between Discrete and Continuous
Representations for Precise Medical Image Segmentation [4.562266115935329]
既存のエンコーダ/デコーダセグメンテーションフレームワークを強化するために設計された新しいボトルネックアーキテクチャであるSynergyNetを提案する。
マルチオーガナイズドセグメンテーションと心的データセットを用いた実験により,SynergyNetが他の技術手法よりも優れていることが示された。
我々の革新的なアプローチは、医用画像解析の重要な領域において、ディープラーニングモデルの全体的な性能と能力を高める方法である。
論文 参考訳(メタデータ) (2023-10-26T20:13:44Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
アルツハイマー病(英語: Alzheimer's disease、AD)は、老化に影響を及ぼす神経変性疾患である。
本稿では,自動特徴抽出とランダム森林のための畳み込みニューラルネットワークを利用する,効率的な早期融合(ELF)手法を提案する。
脳の容積の微妙な変化を検出するという課題に対処するために、画像をヤコビ領域(JD)に変換する。
論文 参考訳(メタデータ) (2023-10-25T19:02:57Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-10T17:58:22Z) - Deep AUC Maximization for Medical Image Classification: Challenges and
Opportunities [60.079782224958414]
我々は、AUCによる新たな深層学習手法による機会と課題を提示し、議論する(別名、アンダーラインbfディープアンダーラインbfAUC分類)。
論文 参考訳(メタデータ) (2021-11-01T15:31:32Z) - A Multi-Task Cross-Task Learning Architecture for Ad-hoc Uncertainty
Estimation in 3D Cardiac MRI Image Segmentation [0.0]
画素レベル(セグメンテーション)タスクと幾何学レベル(距離マップ)タスクの相関を強制するマルチタスククロスタスク学習整合性アプローチを提案する。
本研究は、与えられたモデルから低品質セグメンテーションをフラグする我々のモデルの可能性をさらに示すものである。
論文 参考訳(メタデータ) (2021-09-16T03:53:24Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。