Exploring Few-Shot Object Detection on Blood Smear Images: A Case Study of Leukocytes and Schistocytes
- URL: http://arxiv.org/abs/2503.17107v1
- Date: Fri, 21 Mar 2025 12:46:49 GMT
- Title: Exploring Few-Shot Object Detection on Blood Smear Images: A Case Study of Leukocytes and Schistocytes
- Authors: Davide Antonio Mura, Michela Pinna, Lorenzo Putzu, Andrea Loddo, Alessandra Perniciano, Olga Mulas, Cecilia Di Ruberto,
- Abstract summary: Investigation focuses on a novel approach termed DE-ViT.<n>This methodology is employed in a Few-Shot paradigm, wherein training relies on a limited number of images.<n>While DE-ViT has demonstrated state-of-the-art performance on the COCO and LVIS datasets, both baseline models surpassed its performance on the Raabin-WBC dataset.
- Score: 37.440449828136586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The detection of blood disorders often hinges upon the quantification of specific blood cell types. Variations in cell counts may indicate the presence of pathological conditions. Thus, the significance of developing precise automatic systems for blood cell enumeration is underscored. The investigation focuses on a novel approach termed DE-ViT. This methodology is employed in a Few-Shot paradigm, wherein training relies on a limited number of images. Two distinct datasets are utilised for experimental purposes: the Raabin-WBC dataset for Leukocyte detection and a local dataset for Schistocyte identification. In addition to the DE-ViT model, two baseline models, Faster R-CNN 50 and Faster R-CNN X 101, are employed, with their outcomes being compared against those of the proposed model. While DE-ViT has demonstrated state-of-the-art performance on the COCO and LVIS datasets, both baseline models surpassed its performance on the Raabin-WBC dataset. Moreover, only Faster R-CNN X 101 yielded satisfactory results on the SC-IDB. The observed disparities in performance may possibly be attributed to domain shift phenomena.
Related papers
- Leveraging Sparse Annotations for Leukemia Diagnosis on the Large Leukemia Dataset [44.948939549346676]
Leukemia is 10th most frequently diagnosed cancer and one of the leading causes of cancer related deaths worldwide.
Despite deep learning advances in medical imaging, leukemia analysis lacks a large, diverse multi-task dataset.
We present a large scale WBC dataset and novel methods for detecting WBC with their attributes.
arXiv Detail & Related papers (2025-04-03T14:04:02Z) - KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
We propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module.
Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules.
The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-10-28T16:00:42Z) - A Nasal Cytology Dataset for Object Detection and Deep Learning [0.0]
We present the first dataset of rhino-cytological field images: the NCD (Nasal Cytology dataset)
The real distribution of the cytotypes, populating the nasal mucosa has been replicated, sampling images from slides of clinical patients, and manually annotating each cell found on them.
This work contributes to some of open challenges by presenting a novel machine learning-based approach to aid the automated detection and classification of nasal mucosa cells.
arXiv Detail & Related papers (2024-04-21T19:02:38Z) - Accurate Leukocyte Detection Based on Deformable-DETR and Multi-Level
Feature Fusion for Aiding Diagnosis of Blood Diseases [5.788342067882157]
This paper proposes an innovative method of leukocyte detection: the Multi-level Feature Fusion and Deformable Self-attention DETR (MFDS-DETR)
This model uses high-level features as weights to filter low-level feature information via a channel attention module.
We address the issue of leukocyte feature scarcity by incorporating a multi-scale deformable self-attention module in the encoder.
arXiv Detail & Related papers (2024-01-01T16:28:30Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Imbalanced Domain Generalization for Robust Single Cell Classification
in Hematological Cytomorphology [3.7007225479462402]
We train a robust CNN for WBC classification by addressing cross-domain data imbalance and domain shifts.
Our approach achieves the best F1 macro score compared to other existing methods.
arXiv Detail & Related papers (2023-03-14T10:20:31Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
Vision Transformers (ViTs) have not been applied to this task despite their high classification performance on generic images.
ViTs do not rely on convolutions but on patch-based self-attention and in contrast to CNNs, no prior knowledge of local connectivity is present.
Our results show that while the performance between ViTs and CNNs is on par with a small benefit for ViTs, DeiTs outperform the former if a reasonably large data set is available for training.
arXiv Detail & Related papers (2022-08-17T09:07:45Z) - Deep CNNs for Peripheral Blood Cell Classification [0.0]
We benchmark 27 popular deep convolutional neural network architectures on the microscopic peripheral blood cell images dataset.
We fine-tune the state-of-the-art image classification models pre-trained on the ImageNet dataset for blood cell classification.
arXiv Detail & Related papers (2021-10-18T17:56:07Z) - BERTHop: An Effective Vision-and-Language Model for Chest X-ray Disease
Diagnosis [42.917164607812886]
Vision-and-language(V&L) models take image and text as input and learn to capture the associations between them.
BERTHop is a transformer-based model based on PixelHop++ and VisualBERT, for better capturing the associations between the two modalities.
arXiv Detail & Related papers (2021-08-10T21:51:25Z) - Acute Lymphoblastic Leukemia Detection from Microscopic Images Using
Weighted Ensemble of Convolutional Neural Networks [4.095759108304108]
This article has automated the ALL detection task from microscopic cell images, employing deep Convolutional Neural Networks (CNNs)
Various data augmentations and pre-processing are incorporated for achieving a better generalization of the network.
Our proposed weighted ensemble model, using the kappa values of the ensemble candidates as their weights, has outputted a weighted F1-score of 88.6 %, a balanced accuracy of 86.2 %, and an AUC of 0.941 in the preliminary test set.
arXiv Detail & Related papers (2021-05-09T18:58:48Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.