論文の概要: AIJIM: A Scalable Model for Real-Time AI in Environmental Journalism
- arxiv url: http://arxiv.org/abs/2503.17401v5
- Date: Mon, 28 Apr 2025 11:18:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 18:43:11.259778
- Title: AIJIM: A Scalable Model for Real-Time AI in Environmental Journalism
- Title(参考訳): AIJIM:環境ジャーナリズムにおけるリアルタイムAIのスケーラブルモデル
- Authors: Torsten Tiltack,
- Abstract要約: AIJIMは、リアルタイムAIを環境ジャーナリズムに統合するためのフレームワークである。
2024年にマルロルカ島で試験飛行を行った。
検出精度85.4%、専門家のアノテーションとの89.7%の合意に達した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces AIJIM, the Artificial Intelligence Journalism Integration Model -- a novel framework for integrating real-time AI into environmental journalism. AIJIM combines Vision Transformer-based hazard detection, crowdsourced validation with 252 validators, and automated reporting within a scalable, modular architecture. A dual-layer explainability approach ensures ethical transparency through fast CAM-based visual overlays and optional LIME-based box-level interpretations. Validated in a 2024 pilot on the island of Mallorca using the NamicGreen platform, AIJIM achieved 85.4\% detection accuracy and 89.7\% agreement with expert annotations, while reducing reporting latency by 40\%. Unlike conventional approaches such as Data-Driven Journalism or AI Fact-Checking, AIJIM provides a transferable model for participatory, community-driven environmental reporting, advancing journalism, artificial intelligence, and sustainability in alignment with the UN Sustainable Development Goals and the EU AI Act.
- Abstract(参考訳): 本稿では、リアルタイムAIを環境ジャーナリズムに統合するための新しいフレームワークである人工知能ジャーナリズム統合モデルであるAIJIMを紹介する。
AIJIMは、Vision Transformerベースのハザード検出、クラウドソースによるバリデーションと252バリデータ、スケーラブルでモジュール化されたアーキテクチャ内での自動レポートを組み合わせたものだ。
二重層説明可能性アプローチは、高速CAMベースの視覚オーバーレイとオプションのLIMEベースのボックスレベルの解釈を通じて倫理的透明性を保証する。
NamicGreenプラットフォームを使用した2024年のマロロカ島のパイロットで検証され、AIJIMは85.4\%の検出精度と専門家のアノテーションとの89.7\%の合意を達成し、レポートのレイテンシを40\%削減した。
データ駆動ジャーナリズムやAI Fact-Checkingといった従来のアプローチとは異なり、AIJIMは、参加型、コミュニティ主導の環境報告、ジャーナリズムの進展、人工知能、持続可能性に関する、国連持続可能な開発目標とEU AI法に沿った移行可能なモデルを提供する。
関連論文リスト
- Resilience of Vision Transformers for Domain Generalisation in the Presence of Out-of-Distribution Noisy Images [2.2124795371148616]
マスク付き画像モデリング(MIM)で事前訓練した視覚トラスフォーマーを,OODベンチマークと比較した。
実験では、BEITの既知の堅牢性を実証し、PACSでは94%、Office-Homeでは87%の精度を維持した。
これらの洞察は、実験室で訓練されたモデルと、不確実性の下で確実に一般化するAIシステムを構築するための青写真を提供する現実世界のデプロイメントのギャップを埋めるものだ。
論文 参考訳(メタデータ) (2025-04-05T16:25:34Z) - FakeScope: Large Multimodal Expert Model for Transparent AI-Generated Image Forensics [66.14786900470158]
本稿では,AIによる画像鑑定に適した専門家マルチモーダルモデル(LMM)であるFakeScopeを提案する。
FakeScopeはAI合成画像を高精度に識別し、リッチで解釈可能なクエリ駆動の法医学的な洞察を提供する。
FakeScopeは、クローズドエンドとオープンエンドの両方の法医学的シナリオで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-03-31T16:12:48Z) - From Trust to Truth: Actionable policies for the use of AI in fact-checking in Germany and Ukraine [0.081585306387285]
人工知能(AI)の台頭は、ジャーナリズム、ファクトチェック、メディア規制に対する前例のない機会と課題を提示している。
AIは偽情報と闘い、メディアの実践を強化するツールを提供しているが、その規制されていない使用と関連するリスクは明確なポリシーと協力的な努力を必要としている。
この政策論文は、偽情報に対処し、責任あるAI統合を促進することに焦点を当て、ジャーナリズムとファクトチェックにおけるAIの影響について考察する。
論文 参考訳(メタデータ) (2025-03-24T14:34:00Z) - Identifying Trustworthiness Challenges in Deep Learning Models for Continental-Scale Water Quality Prediction [64.4881275941927]
本稿では,大陸規模のマルチタスクLSTMモデルにおいて,信頼性の総合評価を行う。
本研究は,流域特性に関連するモデル性能格差の系統的パターンを明らかにする。
この作業は、水資源管理のための信頼できるデータ駆動手法を前進させるためのタイムリーな呼びかけとして役立ちます。
論文 参考訳(メタデータ) (2025-03-13T01:50:50Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
本稿では,信頼できるAIシステムを育成する上での,AI開発者,規制当局,ユーザ,メディア間の相互作用について検討する。
進化的ゲーム理論と大言語モデル(LLM)を用いて、異なる規制体制下でこれらのアクター間の戦略的相互作用をモデル化する。
論文 参考訳(メタデータ) (2025-03-12T21:39:38Z) - FairSense-AI: Responsible AI Meets Sustainability [1.980639720136382]
テキストと画像の両方のバイアスを検出し緩和するフレームワークであるFairSense-AIを紹介する。
LLM(Large Language Models)とVLM(Vision-Language Models)を活用することで、FairSense-AIは微妙な偏見やステレオタイピングの形式を明らかにする。
FairSense-AIは、MIT AI Risk RepositoryやNIST AI Risk Management Frameworkといったフレームワークと連携する、AIリスク評価コンポーネントを統合する。
論文 参考訳(メタデータ) (2025-03-04T18:43:57Z) - VLDBench: Vision Language Models Disinformation Detection Benchmark [37.40909096573706]
本稿では、VLDBenchの視覚言語情報検出ベンチマークについて述べる。
これは、unimodal (textonly) と multimodal (text and image) コンテンツの両方にわたる偽情報を検出するための、最初の包括的なベンチマークである。
VLDBenchは厳格な半自動データキュレーションパイプラインを備えており、22のドメイン専門家がアノテーションに300時間以上の時間を割いている。
論文 参考訳(メタデータ) (2025-02-17T02:18:47Z) - Safety is Essential for Responsible Open-Ended Systems [47.172735322186]
オープンエンドレスネス(Open-Endedness)とは、AIシステムが新規で多様なアーティファクトやソリューションを継続的に自律的に生成する能力である。
このポジションペーパーは、Open-Ended AIの本質的に動的で自己伝播的な性質は、重大な、未発見のリスクをもたらすと主張している。
論文 参考訳(メタデータ) (2025-02-06T21:32:07Z) - From Efficiency Gains to Rebound Effects: The Problem of Jevons' Paradox in AI's Polarized Environmental Debate [69.05573887799203]
この議論の多くは、大きな間接効果に対処することなく直接的影響に集中している。
本稿では,Jevonsのパラドックス問題がどのようにAIに適用され,効率向上がパラドックス的に消費増加を促すかを検討する。
これらの2次の影響を理解するには、ライフサイクルアセスメントと社会経済分析を組み合わせた学際的アプローチが必要であると論じる。
論文 参考訳(メタデータ) (2025-01-27T22:45:06Z) - FastRM: An efficient and automatic explainability framework for multimodal generative models [10.184567639685321]
FastRMは、LVLMの説明可能な関連性マップを効率的に予測する手法である。
FastRMは計算時間を99.8%削減し、メモリフットプリントを44.4%削減した。
論文 参考訳(メタデータ) (2024-12-02T13:39:29Z) - Responsible AI in Open Ecosystems: Reconciling Innovation with Risk Assessment and Disclosure [4.578401882034969]
私たちは、モデルパフォーマンス評価がモデル制限やバイアス、その他のリスクの予測を通知したり、妨げたりする方法について焦点を当てています。
我々の発見は、倫理的取り込みを動機づけつつ、オープンソースのイノベーションを維持するための介入やポリシーを設計するAI提供者や法学者に通知することができる。
論文 参考訳(メタデータ) (2024-09-27T19:09:40Z) - The BRAVO Semantic Segmentation Challenge Results in UNCV2024 [68.20197719071436]
我々は,(1)モデルが様々な摂動にさらされたときの精度とキャリブレーションを反映したセマンティック信頼性,(2)トレーニング中に未知のオブジェクトクラスを検出する能力を測定するOOD信頼性の2つのカテゴリを定義した。
その結果、大規模事前学習と最小限のアーキテクチャ設計が、堅牢で信頼性の高いセマンティックセグメンテーションモデルを開発する上で重要であるという興味深い洞察が浮かび上がっている。
論文 参考訳(メタデータ) (2024-09-23T15:17:30Z) - Boosting CLIP Adaptation for Image Quality Assessment via Meta-Prompt Learning and Gradient Regularization [55.09893295671917]
本稿では,Gdient-Regulated Meta-Prompt IQA Framework (GRMP-IQA)を紹介する。
GRMP-IQAはMeta-Prompt事前学習モジュールとQuality-Aware Gradient Regularizationの2つの主要なモジュールから構成されている。
5つの標準BIQAデータセットの実験は、限られたデータ設定下での最先端BIQA手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-09T07:26:21Z) - AI, Climate, and Transparency: Operationalizing and Improving the AI Act [2.874893537471256]
本稿では、気候関連透明性に関するAI法の規定を批判的に検討する。
AI推論におけるエネルギー消費の排除を含む、重要な欠点を特定します。
本稿では,提案法の範囲内での推論関連エネルギー利用を復活させる新しい解釈を提案する。
論文 参考訳(メタデータ) (2024-08-28T07:57:39Z) - Responsible AI for Earth Observation [10.380878519901998]
私たちはAIとEOの交差点を体系的に定義し、責任あるAIプラクティスに重点を置いています。
学術と産業の両面からこの探究を導く重要な要素をいくつか挙げる。
本稿は、今後の研究成果に価値ある洞察を提供するとともに、今後の可能性と新たなトレンドを探求する。
論文 参考訳(メタデータ) (2024-05-31T14:47:27Z) - Towards A Comprehensive Assessment of AI's Environmental Impact [0.5982922468400899]
機械学習に対する最近の関心の高まりは、AI/MLの大規模採用に拍車をかけた。
ライフサイクルを通じて、AI/MLから環境への影響と劣化を監視するフレームワークが必要である。
本研究では、オープンなエネルギーデータとグローバルに取得した衛星観測を用いて、データセンター周辺におけるAIの多面的影響に関連する環境変数を追跡する手法を提案する。
論文 参考訳(メタデータ) (2024-05-22T21:19:35Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - Guiding AI-Generated Digital Content with Wireless Perception [69.51950037942518]
本稿では,AIGC(AIGC)と無線認識を統合し,デジタルコンテンツ制作の質を向上させる。
このフレームワークは、単語の正確な記述が難しいユーザの姿勢を読み取るために、新しいマルチスケール認識技術を採用し、それをスケルトン画像としてAIGCモデルに送信する。
生産プロセスはAIGCモデルの制約としてユーザの姿勢を強制するため、生成されたコンテンツはユーザの要求に適合する。
論文 参考訳(メタデータ) (2023-03-26T04:39:03Z) - Multisource AI Scorecard Table for System Evaluation [3.74397577716445]
本稿では、AI/機械学習(ML)システムの開発者およびユーザに対して標準チェックリストを提供するマルチソースAIスコアカードテーブル(MAST)について述べる。
本稿では,インテリジェンス・コミュニティ・ディレクティブ(ICD)203で概説されている分析的トレードクラフト標準が,AIシステムの性能を評価するためのフレームワークを提供する方法について考察する。
論文 参考訳(メタデータ) (2021-02-08T03:37:40Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。