論文の概要: PT-PINNs: A Parametric Engineering Turbulence Solver based on Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2503.17704v1
- Date: Sat, 22 Mar 2025 09:10:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:34:31.003050
- Title: PT-PINNs: A Parametric Engineering Turbulence Solver based on Physics-Informed Neural Networks
- Title(参考訳): PT-PINNs:物理インフォームドニューラルネットワークに基づくパラメトリックエンジニアリング乱流解法
- Authors: Liang Jiang, Yuzhou Cheng, Kun Luo, Jianren Fan,
- Abstract要約: 本研究では,PINNがデータセットを訓練せずにパラメトリック乱流を解く能力を高める枠組みを提案する。
パラメトリックBFS乱流モデルを構築するのに必要な時間は39時間であり、従来の数値法で必要とされる時間の1/6である。
- 参考スコア(独自算出の注目度): 2.738470018053365
- License:
- Abstract: Physics-informed neural networks (PINNs) demonstrate promising potential in parameterized engineering turbulence optimization problems but face challenges, such as high data requirements and low computational accuracy when applied to engineering turbulence problems. This study proposes a framework that enhances the ability of PINNs to solve parametric turbulence problems without training datasets from experiments or CFD-Parametric Turbulence PINNs (PT-PINNs)). Two key methods are introduced to improve the accuracy and robustness of this framework. The first is a soft constraint method for turbulent viscosity calculation. The second is a pre-training method based on the conservation of flow rate in the flow field. The effectiveness of PT-PINNs is validated using a three-dimensional backward-facing step (BFS) turbulence problem with two varying parameters (Re = 3000-200000, ER = 1.1-1.5). PT-PINNs produce predictions that closely match experimental data and computational fluid dynamics (CFD) results across various conditions. Moreover, PT-PINNs offer a computational efficiency advantage over traditional CFD methods. The total time required to construct the parametric BFS turbulence model is 39 hours, one-sixteenth of the time required by traditional numerical methods. The inference time for a single-condition prediction is just 40 seconds-only 0.5% of a single CFD computation. These findings highlight the potential of PT-PINNs for future applications in engineering turbulence optimization problems.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、パラメータ化されたエンジニアリング乱流最適化問題において有望なポテンシャルを示すが、エンジニアリング乱流問題に適用した場合、高いデータ要求や低い計算精度といった課題に直面している。
本研究では,実験やCFD-Parametric Turbulence PINNs (PT-PINNs) のデータセットをトレーニングすることなく,パラメータ乱れを解消するためのPINNの能力を高める枠組みを提案する。
このフレームワークの精度と堅牢性を改善するために、2つの重要な手法が導入された。
1つ目は、乱流粘性計算のためのソフト制約法である。
2つ目は,流れ場の流量の保存に基づく事前学習法である。
PT-PINNの有効性は、2つのパラメータ(Re = 3000-200000, ER = 1.1-1.5)を持つ3次元逆向きステップ(BFS)乱流問題を用いて検証される。
PT-PINNは実験データと計算流体力学(CFD)とを密に一致させる予測を生成する。
さらに、PT-PINNは従来のCFD法よりも計算効率が優れている。
パラメトリックBFS乱流モデルを構築するのに必要な総時間は39時間であり、従来の数値法で必要とされる時間の1/6である。
単一条件予測の推論時間は、単一のCFD計算のわずか40秒間のみ0.5%である。
これらの知見は,工学的乱流最適化問題におけるPT-PINNの今後の応用の可能性を明らかにするものである。
関連論文リスト
- Using Parametric PINNs for Predicting Internal and External Turbulent Flows [6.387263468033964]
提案するRANS-PINNフレームワークは,シリンダー上の流れの予測にのみ焦点をあてたものである。
本研究では,内流と外流の双方に対して,関連する乱流変数を予測する際の精度について検討する。
論文 参考訳(メタデータ) (2024-10-24T17:08:20Z) - Coupling Machine Learning Local Predictions with a Computational Fluid Dynamics Solver to Accelerate Transient Buoyant Plume Simulations [0.0]
本研究では,CFDと機械学習を組み合わせた多用途でスケーラブルなハイブリッド手法を提案する。
目的は、局所的な特徴を活用して、比較可能なシナリオにおける圧力場の時間的変化を予測することである。
圧力-速度結合過程を加速するために初期値として圧力推定を用いた。
論文 参考訳(メタデータ) (2024-09-11T10:38:30Z) - Parametric Learning of Time-Advancement Operators for Unstable Flame
Evolution [0.0]
本研究では、パラメトリック偏微分方程式(PDE)に対する時間適応演算子学習への機械学習の適用について検討する。
我々の焦点は、PDEパラメータを表す追加入力を処理するために既存の演算子学習方法を拡張することである。
目標は、短期的なソリューションを正確に予測し、堅牢な長期統計を提供する統一的な学習アプローチを作ることだ。
論文 参考訳(メタデータ) (2024-02-14T18:12:42Z) - RANS-PINN based Simulation Surrogates for Predicting Turbulent Flows [3.1861308132183384]
我々は,高レイノルズ数乱流状態における流れ場を予測するために,改良されたPINNフレームワークであるRANS-PINNを導入する。
乱流によってもたらされるさらなる複雑さを考慮するため、RANS-PINNはレイノルズ平均ナヴィエ・ストークス(RANS)の定式化に基づく2方程式渦粘性モデルを採用している。
論文 参考訳(メタデータ) (2023-06-09T16:55:49Z) - Spherical Fourier Neural Operators: Learning Stable Dynamics on the
Sphere [53.63505583883769]
球面幾何学の演算子を学習するための球面FNO(SFNO)を紹介する。
SFNOは、気候力学の機械学習に基づくシミュレーションに重要な意味を持つ。
論文 参考訳(メタデータ) (2023-06-06T16:27:17Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
実験によって測定された速度場の時間的変化を予測するために,最先端の演算子学習手法を適用した。
その結果、FNOはレイノルズ数の範囲で実験速度場の進化を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2023-01-19T20:04:36Z) - Fourier Continuation for Exact Derivative Computation in
Physics-Informed Neural Operators [53.087564562565774]
PINOは、偏微分方程式を学習するための有望な実験結果を示す機械学習アーキテクチャである。
非周期問題に対して、フーリエ継続(FC)を利用して正確な勾配法をPINOに適用するアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-11-29T06:37:54Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
最適な電力フロー(ACOPF)のソリューションを解決するために、ディープニューラルネットワーク(DNN)を提案します。
提案されたSIDNNは、幅広いOPFスキームと互換性がある。
他のLearning-to-OPFスキームとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-03-27T00:45:23Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
Rayleigh-B'enard乱流流に対するPINNのサーロゲートモデルの使用を検討する。
標準ピンの精度が低いゾーンであるトレーニング境界に近い正規化として、どのように機能するかを示す。
50億のDNS座標全体のサロゲートの予測精度は、相対的なL2ノルムで[0.3% -- 4%]の範囲のすべてのフロー変数のエラーをもたらします。
論文 参考訳(メタデータ) (2021-03-05T09:48:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。