論文の概要: Coupling Machine Learning Local Predictions with a Computational Fluid Dynamics Solver to Accelerate Transient Buoyant Plume Simulations
- arxiv url: http://arxiv.org/abs/2409.07175v1
- Date: Wed, 11 Sep 2024 10:38:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 14:49:40.638880
- Title: Coupling Machine Learning Local Predictions with a Computational Fluid Dynamics Solver to Accelerate Transient Buoyant Plume Simulations
- Title(参考訳): 過渡的浮動小数点シミュレーションを高速化する計算流体力学解を用いた機械学習局所予測の結合
- Authors: Clément Caron, Philippe Lauret, Alain Bastide,
- Abstract要約: 本研究では,CFDと機械学習を組み合わせた多用途でスケーラブルなハイブリッド手法を提案する。
目的は、局所的な特徴を活用して、比較可能なシナリオにおける圧力場の時間的変化を予測することである。
圧力-速度結合過程を加速するために初期値として圧力推定を用いた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven methods demonstrate considerable potential for accelerating the inherently expensive computational fluid dynamics (CFD) solvers. Nevertheless, pure machine-learning surrogate models face challenges in ensuring physical consistency and scaling up to address real-world problems. This study presents a versatile and scalable hybrid methodology, combining CFD and machine learning, to accelerate long-term incompressible fluid flow simulations without compromising accuracy. A neural network was trained offline using simulated data of various two-dimensional transient buoyant plume flows. The objective was to leverage local features to predict the temporal changes in the pressure field in comparable scenarios. Due to cell-level predictions, the methodology was successfully applied to diverse geometries without additional training. Pressure estimates were employed as initial values to accelerate the pressure-velocity coupling procedure. The results demonstrated an average improvement of 94% in the initial guess for solving the Poisson equation. The first pressure corrector acceleration reached a mean factor of 3, depending on the iterative solver employed. Our work reveals that machine learning estimates at the cell level can enhance the efficiency of CFD iterative linear solvers while maintaining accuracy. Although the scalability of the methodology to more complex cases has yet to be demonstrated, this study underscores the prospective value of domain-specific hybrid solvers for CFD.
- Abstract(参考訳): データ駆動法は、本質的に高価な計算流体力学(CFD)の解法を加速させる大きな可能性を示している。
それでも、純粋な機械学習サロゲートモデルは、物理的な一貫性を確保し、現実世界の問題に対処するためにスケールアップするという課題に直面している。
本研究では,CFDと機械学習を組み合わせた多目的かつスケーラブルなハイブリッド手法を提案する。
ニューラルネットワークは、様々な2次元過渡噴流のシミュレーションデータを用いてオフラインで訓練された。
目的は、局所的な特徴を活用して、比較可能なシナリオにおける圧力場の時間的変化を予測することである。
細胞レベルでの予測のため、この手法は追加の訓練を受けずに様々な測地に適用された。
圧力-速度結合過程を加速するために初期値として圧力推定を用いた。
結果,ポアソン方程式の解法における初期推定値の平均改善率は94%であった。
第1圧力補正器加速度は, 繰り返し解法により平均3に到達した。
本研究は, セルレベルでの機械学習推定により, 精度を維持しつつ, CFD反復線形解法の効率を向上できることを明らかにする。
より複雑なケースに対する方法論のスケーラビリティはまだ実証されていないが、本研究はCFDのためのドメイン固有ハイブリッド・ソルバの今後の価値を裏付けるものである。
関連論文リスト
- Inpainting Computational Fluid Dynamics with Deep Learning [8.397730500554047]
有効な流体データ補完法は、流体力学実験において必要なセンサー数を削減する。
流体データ完備化問題の誤った性質は、理論解を得るのを違法に困難にしている。
ベクトル量子化法を用いて、完全および不完全流体データ空間を離散値下次元表現にマッピングする。
論文 参考訳(メタデータ) (2024-02-27T03:44:55Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Real-time simulation of parameter-dependent fluid flows through deep
learning-based reduced order models [0.2538209532048866]
還元次数モデル (ROM) はパラメータ依存の流体力学問題を高速に近似する。
ディープラーニング(DL)ベースのROMは、非線形トライアル多様体と還元力学の両方を非侵襲的に学習することで、これらの制限をすべて克服する。
得られたPOD-DL-ROMは、シリンダーベンチマークの周囲の流れ、固定された剛性ブロックに付着した弾性ビームとラミナー非圧縮性フローとの流体構造相互作用、大脳動脈瘤内の血流のほぼリアルタイムに正確な結果をもたらすことが示されている。
論文 参考訳(メタデータ) (2021-06-10T13:07:33Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
物理制約付き深層学習モデルを構築し, 多相多孔質体における多相流の解法について検討した。
モデルは物理に基づくシミュレーションデータから訓練され、物理過程をエミュレートする。
このモデルは物理シミュレーションと比較して1400倍のスピードアップで予測を行う。
論文 参考訳(メタデータ) (2021-04-30T02:15:01Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Fast Modeling and Understanding Fluid Dynamics Systems with
Encoder-Decoder Networks [0.0]
本研究では,有限体積シミュレータを用いて,高精度な深層学習に基づくプロキシモデルを効率的に教えることができることを示す。
従来のシミュレーションと比較して、提案したディープラーニングアプローチはより高速なフォワード計算を可能にする。
深層学習モデルの重要物理パラメータに対する感度を定量化することにより、インバージョン問題を大きな加速で解くことができることを示す。
論文 参考訳(メタデータ) (2020-06-09T17:14:08Z) - Enhancement of shock-capturing methods via machine learning [0.0]
我々は不連続解を用いてPDEをシミュレートするための改良された有限体積法を開発した。
5階WENO法の結果を改善するためにニューラルネットワークを訓練する。
数値解が過度に拡散するシミュレーションにおいて,本手法はWENOよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-02-06T21:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。