Thermal properties of a non-Hermitian system interacting with oscillator
- URL: http://arxiv.org/abs/2503.17723v1
- Date: Sat, 22 Mar 2025 10:38:12 GMT
- Title: Thermal properties of a non-Hermitian system interacting with oscillator
- Authors: Gargi Das, Bhabani Prasad Mandal,
- Abstract summary: We consider a two level $Psigma_z$ pseudo-Hermitian system in contact with a thermal bath to study various thermodynamic properties.<n>The quantum system undergoes a $Psigma_z$ phase transition in each invariant subspace, when the non-Hermitian coupling exceeds a certain critical value.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we consider a two level $P\sigma_{z}$ pseudo-Hermitian system in contact with a thermal bath to study various thermodynamic properties. The system is realized in terms of infinitely many invariant subspaces. We find explicit solution in each subspace analytically. The quantum system undergoes a $P\sigma_{z}$ phase transition in each invariant subspace, when the non-Hermitian coupling exceeds a certain critical value ($\mu_c$). We calculate various thermodynamic quantities and observe that these quantities show divergences exactly at the exceptional points (EPs) of the theory.
Related papers
- The Eigenstate Thermalization Hypothesis in a Quantum Point Contact Geometry [0.0]
It is known that the long-range quantum entanglement exhibited in free fermion systems is sufficient to "thermalize" a small subsystem.
We show that entanglement entropy of a subsystem connected by a small number of quantum point contacts is sub-extensive, scaling as the linear size of the subsystem.
arXiv Detail & Related papers (2025-01-06T15:19:17Z) - Rate Function Modelling of Quantum Many-Body Adiabaticity [0.0]
We study the dynamics of adiabatic processes for quantum many-body systems.<n>In particular, we study the adiabatic rate function $f(T, Delta lambda)$ in dependence of the ramp time $T$.
arXiv Detail & Related papers (2024-02-27T11:10:33Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
We compute the quantum Fisher information (QFI) for both an energy eigenstate and a thermal density matrix.
We compare our results with earlier results for a local unitary transformation.
arXiv Detail & Related papers (2023-04-04T09:28:19Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Finite temperature quantum condensations in the space of states: a new
perspective for quantum annealing [0.0]
We show that the condensation QPTs recently introduced at zero temperature can naturally be extended to finite temperature.
We illustrate this criterion in the paradigmatic Grover model and in a system of free fermions in a one-dimensional inhomogeneous lattice.
arXiv Detail & Related papers (2022-03-11T08:59:38Z) - Universal thermodynamics of an SU($N$) Fermi-Hubbard Model [0.0]
We numerically calculate the thermodynamics of the SU($N$) FHM in the two-dimensional square lattice near densities of one particle per site.
We find that for temperatures above the superexchange energy, where the correlation length is short, the energy, number of on-site pairs, and kinetic energy are universal functions of $N$.
arXiv Detail & Related papers (2021-08-09T16:25:33Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Thermalization processes induced by quantum monitoring in multi-level
systems [0.0]
We study the heat statistics of a multi-level $N$-dimensional quantum system monitored by a sequence of projective measurements.
The late-time, properties of the heat characteristic function are analyzed in the thermodynamic limit of a high, ideally infinite, number $M$ of measurements.
arXiv Detail & Related papers (2020-12-30T16:14:05Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.