論文の概要: Aportes para el cumplimiento del Reglamento (UE) 2024/1689 en robótica y sistemas autónomos
- arxiv url: http://arxiv.org/abs/2503.17730v1
- Date: Sat, 22 Mar 2025 11:04:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:37:06.660892
- Title: Aportes para el cumplimiento del Reglamento (UE) 2024/1689 en robótica y sistemas autónomos
- Title(参考訳): Aportes para el cumplimiento del Reglamento (UE) 2024/1689 en robótica y sistemas autónomos
- Authors: Francisco J. Rodríguez Lera, Yoana Pita Lorenzo, David Sobrín Hidalgo, Laura Fernández Becerra, Irene González Fernández, Jose Miguel Guerrero Hernández,
- Abstract要約: この研究は、高度なロボットシステムに適用可能なサイバーセキュリティツールを分析する。
これらのシステムのセキュリティ、完全性、レジリエンスを保証するため、基本的なツールのリストが提案されている。
10つの評価基準は、規制の遵守を確実にし、人間とロボットの相互作用のリスクを低減するために定義される。
- 参考スコア(独自算出の注目度): 0.461803711540329
- License:
- Abstract: Cybersecurity in robotics stands out as a key aspect within Regulation (EU) 2024/1689, also known as the Artificial Intelligence Act, which establishes specific guidelines for intelligent and automated systems. A fundamental distinction in this regulatory framework is the difference between robots with Artificial Intelligence (AI) and those that operate through automation systems without AI, since the former are subject to stricter security requirements due to their learning and autonomy capabilities. This work analyzes cybersecurity tools applicable to advanced robotic systems, with special emphasis on the protection of knowledge bases in cognitive architectures. Furthermore, a list of basic tools is proposed to guarantee the security, integrity, and resilience of these systems, and a practical case is presented, focused on the analysis of robot knowledge management, where ten evaluation criteria are defined to ensure compliance with the regulation and reduce risks in human-robot interaction (HRI) environments.
- Abstract(参考訳): ロボティクスにおけるサイバーセキュリティは、インテリジェントで自動化されたシステムの具体的なガイドラインを確立する人工知能法(Artificial Intelligence Act)として知られる2024/1689における重要な側面である。
この規制枠組みの根本的な違いは、人工知能(AI)を備えたロボットと、AIなしで自動化システムを介して動作するロボットの違いである。
この研究は、高度なロボットシステムに適用可能なサイバーセキュリティツールを分析し、特に認知アーキテクチャにおける知識基盤の保護に重点を置いている。
さらに、これらのシステムのセキュリティ、完全性、レジリエンスを保証するための基本的なツールのリストを提案し、ロボット知識管理の分析に焦点をあてた実践事例を提示する。
関連論文リスト
- Generative AI Agents in Autonomous Machines: A Safety Perspective [9.02400798202199]
生成AIエージェントは、非並列機能を提供するが、ユニークな安全性上の懸念もある。
本研究では、生成モデルが物理自律機械にエージェントとして統合される際の安全要件の進化について検討する。
我々は、自律機械で生成AI技術を使用するための総合的な安全スコアカードの開発と実装を推奨する。
論文 参考訳(メタデータ) (2024-10-20T20:07:08Z) - Safety Control of Service Robots with LLMs and Embodied Knowledge Graphs [12.787160626087744]
本稿では,大規模言語モデルとERCP(Embodied Robotic Control Prompts)とEKG(Embodied Knowledge Graphs)との新たな統合を提案する。
ERCPは、LLMが安全かつ正確な応答を生成するための事前定義された命令として設計されている。
EKGは、ロボットの動作が安全プロトコルと継続的に一致していることを保証する包括的な知識基盤を提供する。
論文 参考訳(メタデータ) (2024-05-28T05:50:25Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - The Need for a Meta-Architecture for Robot Autonomy [0.0]
ロボットシステムの長期的な自律性には、障害や振る舞いの問題、知識の欠如に対処できるプラットフォームが暗黙的に必要である。
我々は,自律型ロボットエージェントの認知アーキテクチャの生成モデルとして,モデルベース工学の原則と認証可能な信頼性を前提としたケースを提起した。
論文 参考訳(メタデータ) (2022-07-20T07:27:23Z) - System Safety and Artificial Intelligence [0.0]
社会的領域にまたがるAIの新たな応用には、新たなハザードが伴う。
システム安全の分野は、安全クリティカルシステムにおける事故や危害に対処してきた。
この章はシステムの安全性の先駆者であるナンシー・リーブソンに敬意を表しています。
論文 参考訳(メタデータ) (2022-02-18T16:37:54Z) - Proceedings of the Robust Artificial Intelligence System Assurance
(RAISA) Workshop 2022 [0.0]
RAISAワークショップは、堅牢な人工知能(AI)と機械学習(ML)システムの研究、開発、応用に焦点を当てる。
特定のMLアルゴリズムに関してロバストネスを研究するのではなく、システムアーキテクチャのレベルでロバストネスの保証を検討することを目的としています。
論文 参考訳(メタデータ) (2022-02-10T01:15:50Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
記事は、インテリジェンスが機械学習技術の進歩の鍵を握っていると主張している。
私たちは、インテリジェンスを具体化するための課題と機会を強調します。
本稿では,ロボット学習の最先端性を著しく向上させる研究の方向性を提案する。
論文 参考訳(メタデータ) (2021-10-28T16:04:01Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
我々は、信頼できるAI推論システムの設計、展開、運用にアプローチするための業界調査ビューを提供する。
信頼された実行環境を用いたAIシステムの機会と課題を強調します。
我々は,産業,アカデミック,政府研究者のグローバルな集団的注意を必要とする,さらなる発展の分野を概説する。
論文 参考訳(メタデータ) (2020-08-10T23:05:55Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z) - Hacia los Comit\'es de \'Etica en Inteligencia Artificial [68.8204255655161]
以下のルールを監督できるルールと専門組織を作成することが最優先である。
この研究は、大学において、人工知能に特化した倫理委員会や委員会を創設することを提案する。
論文 参考訳(メタデータ) (2020-02-11T23:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。