Aportes para el cumplimiento del Reglamento (UE) 2024/1689 en robótica y sistemas autónomos
- URL: http://arxiv.org/abs/2503.17730v1
- Date: Sat, 22 Mar 2025 11:04:42 GMT
- Title: Aportes para el cumplimiento del Reglamento (UE) 2024/1689 en robótica y sistemas autónomos
- Authors: Francisco J. Rodríguez Lera, Yoana Pita Lorenzo, David Sobrín Hidalgo, Laura Fernández Becerra, Irene González Fernández, Jose Miguel Guerrero Hernández,
- Abstract summary: This work analyzes cybersecurity tools applicable to advanced robotic systems.<n>A list of basic tools is proposed to guarantee the security, integrity, and resilience of these systems.<n>Ten evaluation criteria are defined to ensure compliance with the regulation and reduce risks in human-robot interaction.
- Score: 0.461803711540329
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cybersecurity in robotics stands out as a key aspect within Regulation (EU) 2024/1689, also known as the Artificial Intelligence Act, which establishes specific guidelines for intelligent and automated systems. A fundamental distinction in this regulatory framework is the difference between robots with Artificial Intelligence (AI) and those that operate through automation systems without AI, since the former are subject to stricter security requirements due to their learning and autonomy capabilities. This work analyzes cybersecurity tools applicable to advanced robotic systems, with special emphasis on the protection of knowledge bases in cognitive architectures. Furthermore, a list of basic tools is proposed to guarantee the security, integrity, and resilience of these systems, and a practical case is presented, focused on the analysis of robot knowledge management, where ten evaluation criteria are defined to ensure compliance with the regulation and reduce risks in human-robot interaction (HRI) environments.
Related papers
- Human-Centered AI and Autonomy in Robotics: Insights from a Bibliometric Study [3.794859469462058]
Human-Centered AI (HCAI) aims to balance human control and automation.
This paper presents a bibliometric analysis of intelligent autonomous robotic systems using SciMAT and VOSViewer.
The findings highlight academic trends, emerging topics, and AI's role in self-adaptive robotic behaviour.
arXiv Detail & Related papers (2025-04-28T14:45:48Z) - Generative AI Agents in Autonomous Machines: A Safety Perspective [9.02400798202199]
generative AI agents provide unparalleled capabilities, but they also have unique safety concerns.
This work investigates the evolving safety requirements when generative models are integrated as agents into physical autonomous machines.
We recommend the development and implementation of comprehensive safety scorecards for the use of generative AI technologies in autonomous machines.
arXiv Detail & Related papers (2024-10-20T20:07:08Z) - Safety Control of Service Robots with LLMs and Embodied Knowledge Graphs [12.787160626087744]
We propose a novel integration of Large Language Models with Embodied Robotic Control Prompts (ERCPs) and Embodied Knowledge Graphs (EKGs)
ERCPs are designed as predefined instructions that ensure LLMs generate safe and precise responses.
EKGs provide a comprehensive knowledge base ensuring that the actions of the robot are continuously aligned with safety protocols.
arXiv Detail & Related papers (2024-05-28T05:50:25Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - The Need for a Meta-Architecture for Robot Autonomy [0.0]
Long-term autonomy of robotic systems implicitly requires platforms that are able to handle faults, problems in behaviors, or lack of knowledge.
We put forward the case for a generative model of cognitive architectures for autonomous robotic agents that subscribes to the principles of model-based engineering and certifiable dependability.
arXiv Detail & Related papers (2022-07-20T07:27:23Z) - System Safety and Artificial Intelligence [0.0]
New applications of AI across societal domains come with new hazards.
The field of system safety has dealt with accidents and harm in safety-critical systems.
This chapter honors system safety pioneer Nancy Leveson.
arXiv Detail & Related papers (2022-02-18T16:37:54Z) - Proceedings of the Robust Artificial Intelligence System Assurance
(RAISA) Workshop 2022 [0.0]
The RAISA workshop will focus on research, development and application of robust artificial intelligence (AI) and machine learning (ML) systems.
Rather than studying robustness with respect to particular ML algorithms, our approach will be to explore robustness assurance at the system architecture level.
arXiv Detail & Related papers (2022-02-10T01:15:50Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
Article argues that embodied intelligence is a key driver for the advancement of machine learning technology.
We highlight challenges and opportunities specific to embodied intelligence.
We propose research directions which may significantly advance the state-of-the-art in robot learning.
arXiv Detail & Related papers (2021-10-28T16:04:01Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
We provide an industry research view for approaching the design, deployment, and operation of trustworthy AI inference systems.
We highlight opportunities and challenges in AI systems using trusted execution environments.
We outline areas of further development that require the global collective attention of industry, academia, and government researchers.
arXiv Detail & Related papers (2020-08-10T23:05:55Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z) - Hacia los Comit\'es de \'Etica en Inteligencia Artificial [68.8204255655161]
It is priority to create the rules and specialized organizations that can oversight the following of such rules.
This work proposes the creation, at the universities, of Ethical Committees or Commissions specialized on Artificial Intelligence.
arXiv Detail & Related papers (2020-02-11T23:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.