論文の概要: GaussianFocus: Constrained Attention Focus for 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2503.17798v1
- Date: Sat, 22 Mar 2025 15:18:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:38:47.350931
- Title: GaussianFocus: Constrained Attention Focus for 3D Gaussian Splatting
- Title(参考訳): GaussianFocus:3Dガウススティングのための制約付き注意焦点
- Authors: Zexu Huang, Min Xu, Stuart Perry,
- Abstract要約: 3D Gaussian Splatting技術は、最高レベルのレンダリング品質と効率を提供する。
しかし、この手法はあらゆる訓練の観点で過度に過度にノイズを発生させる傾向がある。
我々はGaussianFocusを紹介した。GaussianFocusは、パッチアテンションアルゴリズムを取り入れてレンダリング品質を改良する革新的なアプローチである。
- 参考スコア(独自算出の注目度): 5.759434800012218
- License:
- Abstract: Recent developments in 3D reconstruction and neural rendering have significantly propelled the capabilities of photo-realistic 3D scene rendering across various academic and industrial fields. The 3D Gaussian Splatting technique, alongside its derivatives, integrates the advantages of primitive-based and volumetric representations to deliver top-tier rendering quality and efficiency. Despite these advancements, the method tends to generate excessive redundant noisy Gaussians overfitted to every training view, which degrades the rendering quality. Additionally, while 3D Gaussian Splatting excels in small-scale and object-centric scenes, its application to larger scenes is hindered by constraints such as limited video memory, excessive optimization duration, and variable appearance across views. To address these challenges, we introduce GaussianFocus, an innovative approach that incorporates a patch attention algorithm to refine rendering quality and implements a Gaussian constraints strategy to minimize redundancy. Moreover, we propose a subdivision reconstruction strategy for large-scale scenes, dividing them into smaller, manageable blocks for individual training. Our results indicate that GaussianFocus significantly reduces unnecessary Gaussians and enhances rendering quality, surpassing existing State-of-The-Art (SoTA) methods. Furthermore, we demonstrate the capability of our approach to effectively manage and render large scenes, such as urban environments, whilst maintaining high fidelity in the visual output.
- Abstract(参考訳): 近年の3D再構成とニューラルレンダリングの進歩は、様々な学術・産業分野における写真リアルな3Dシーンレンダリングの能力を著しく向上させてきた。
3D Gaussian Splatting技術は、そのデリバティブとともに、プリミティブベースとボリューム表現の利点を統合して、最上位のレンダリング品質と効率を提供する。
これらの進歩にもかかわらず、この手法はすべてのトレーニングビューに過剰な冗長なガウスノイズを発生させる傾向があり、それによってレンダリング品質が低下する。
さらに、3Dガウス・スプレイティングは、小規模でオブジェクト中心のシーンに優れるが、ビデオメモリの制限、過度な最適化期間、ビュー間の変数の出現といった制約により、より大きなシーンへの適用が妨げられる。
これらの課題に対処するため,GaussianFocusを導入し,レンダリング品質を向上するためのパッチアテンションアルゴリズムを導入し,冗長性を最小化するGaussianの制約戦略を実装した。
さらに,大規模シーンを個別の訓練のために,より小さく,管理可能なブロックに分割し,大規模シーンの分割再構築戦略を提案する。
以上の結果から,GaussianFocusは不要なガウスを著しく減らし,レンダリング品質を向上し,既存のState-of-The-Art(SoTA)手法を抜いた。
さらに,視覚出力の忠実度を維持しつつ,都市環境などの大規模シーンを効果的に管理・レンダリングする手法の有効性を実証する。
関連論文リスト
- Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
本稿では,ガウスカーネルを線形カーネルに置き換えて,よりシャープで高精度な結果を得る3Dリニアスティング(DLS)を提案する。
3DLSは、最先端の忠実さと正確さを示し、ベースライン3DGSよりも30%のFPS改善を実現している。
論文 参考訳(メタデータ) (2024-11-19T11:59:54Z) - MCGS: Multiview Consistency Enhancement for Sparse-View 3D Gaussian Radiance Fields [73.49548565633123]
3Dガウシアンによって表現される放射場は、高いトレーニング効率と高速レンダリングの両方を提供する、新しいビューの合成に優れている。
既存の手法では、高密度推定ネットワークからの奥行き先を組み込むことが多いが、入力画像に固有の多視点一貫性を見落としている。
本稿では,3次元ガウス・スプレイティング(MCGS)に基づくビュー・フレームワークを提案し,スパークス・インプット・ビューからシーンを再構築する。
論文 参考訳(メタデータ) (2024-10-15T08:39:05Z) - GaRField++: Reinforced Gaussian Radiance Fields for Large-Scale 3D Scene Reconstruction [1.7624442706463355]
本稿では,3次元ガウススプラッティングに基づく大規模シーン再構築のための新しい枠組みを提案する(3DGS)。
スケーラビリティ問題に対処するため,大規模シーンを複数のセルに分割し,各セルの候補ポイントクラウドとカメラビューとを相関させる。
本研究では,大規模シーン再構成の最先端手法よりも連続的に高忠実度レンダリング結果を生成することを示す。
論文 参考訳(メタデータ) (2024-09-19T13:43:31Z) - SplatFields: Neural Gaussian Splats for Sparse 3D and 4D Reconstruction [24.33543853742041]
3Dガウススティング(3DGS)は実用的でスケーラブルな再構築手法として登場した。
暗黙的ニューラルネットワークの出力としてモデル化することで,スプレート特徴を効果的に正規化する最適化手法を提案する。
当社のアプローチは,異なるセットアップやシーンの複雑さをまたいだ広範なテストによって実証されるような,静的および動的ケースを効果的に処理する。
論文 参考訳(メタデータ) (2024-09-17T14:04:20Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本研究では,視覚的忠実度と前景の細部を高い圧縮比で保持する原理的感度プルーニングスコアを提案する。
また,トレーニングパイプラインを変更することなく,事前訓練した任意の3D-GSモデルに適用可能な複数ラウンドプルーファインパイプラインを提案する。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - Bootstrap-GS: Self-Supervised Augmentation for High-Fidelity Gaussian Splatting [9.817215106596146]
3D-GSは、トレーニング中に遭遇したものとは大きく異なる、新しいビューを生成する際に制限に直面します。
この問題に対処するためのブートストラップフレームワークを導入します。
提案手法は,限られたトレーニングセットと整合した新しい視点から,擬似地下真実を合成する。
論文 参考訳(メタデータ) (2024-04-29T12:57:05Z) - SWAG: Splatting in the Wild images with Appearance-conditioned Gaussians [2.2369578015657954]
暗黙の神経表現法は、未構造化画像から3Dシーンを学習する際、顕著な進歩を見せている。
非教師的手法でシーンオブオーダの存在を対処するために、過渡的なガウシアンを訓練する新しいメカニズムを導入する。
論文 参考訳(メタデータ) (2024-03-15T16:00:04Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
VastGaussianは3次元ガウススティングに基づく大規模シーンにおける高品質な再構成とリアルタイムレンダリングのための最初の方法である。
提案手法は既存のNeRF手法より優れており,複数の大規模シーンデータセットの最先端結果が得られる。
論文 参考訳(メタデータ) (2024-02-27T11:40:50Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z) - Neural Point-based Volumetric Avatar: Surface-guided Neural Points for
Efficient and Photorealistic Volumetric Head Avatar [62.87222308616711]
ニューラルポイント表現とニューラルボリュームレンダリングプロセスを採用したフルネーム(名前)を提案する。
具体的には、ニューラルポイントは高分解能UV変位マップを介してターゲット表現の表面を戦略的に拘束する。
設計上は,アバターをアニメーションする際の正確な表現制御を確保しつつ,地形的に変化する領域や細い構造を扱えるように設計されている。
論文 参考訳(メタデータ) (2023-07-11T03:40:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。